

NUMERICAL ANALYSES OF CHEMICAL AND THERMAL STRUCTURE OF MICRO FLAMES

By

Eng. Mahmoud Ashraf Hussein Ali

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
MECHANICAL POWER ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

NUMERICAL ANALYSES OF CHEMICAL AND THERMAL STRUCTURE OF MICRO FLAMES

By

Eng. Mahmoud Ashraf Hussein Ali

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

MECHANICAL POWER ENGINEERING

Under the Supervision of

Prof. Dr. Essam E. Khalil

Professor, Mechanical Power Engineering Department Faculty of Engineering, Cairo University

Dr. Hatem Kayed Haridy

Dr. Taher Mohamed Abou-deif

Lecturer, Mechanical Power Engineering Department Faculty of Engineering, Cairo University Lecturer, Mechanical Power Engineering Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

NUMERICAL ANALYSES OF CHEMICAL AND THERMAL STRUCTURE OF MICRO FLAMES

By

Eng. Mahmoud Ashraf Hussein Ali

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

MECHANICAL POWER ENGINEERING

Approved by the	
Examining Committee	
Prof. Dr. Essam E. Khalil	(Thesis Main Advisor and member)
Professor, Mechanical Power Departmen	t-Faculty of Engineering, Cairo University
Prof. Dr. Abdel-Hafez Hasanin	(Internal Examiner)
Professor, Mechanical Power Departmen	t-Faculty of Engineering, Cairo University

Prof. Dr. Mohamed Fayk Abd-Rabo (External Examiner)

Professor, Mechanical Power Department-Faculty of Engineering-Banha University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 **Engineer's Name:** Mahmoud Ashraf Hussein Ali

Date of Birth: 16 /02 /1992 **Nationality:** Egyptian

E-mail: Eng_mah162@yahoo.com

Phone: 01114625273

Address: 12Abo-Elmaali Street, El-Agoza, Giza

Registration Date: 01 /10 /2014 **Awarding Date:**/2018 **Degree:** Master of Science

Department: Mechanical Power Engineering

Supervisors:

Prof. Dr. Essam E. Khalil Dr. Hatem Kayed Haridy

Dr. Taher Mohamed Abou-deif Ismail

Examiners: Prof. Dr. Essam E. Khalil (Thesis main advisor)

Prof. Dr. Abdel-Hafez Hasanin (Internal examiner)
Prof. Dr. Mohamed Fayk (External examiner)
Professor, Mechanical Power Department-Faculty of

Engineering-Banha University

Title of Thesis:

NUMERICAL ANALYSES OF CHEMICAL AND THERMAL STRUCTURE OF MICRO FLAMES

Key Words:

Micro diffusion flame; Laminar hydrogen flame; Heat recirculation; Flame burner interaction; Reaction mechanism

Summary:

The present study presents numerical analyses of chemical and thermal structure for different micro flames formed inside micro tube burner by studying the effect of changing fuel flow velocity, burner material and type of fuel. The present study is performed using ANSYS 17 CFD package to simulate eleven case studies. Reduced Deutschmann chemical reaction mechanism is adopted in this study.

Acknowledgment

Firstly, I would like to thank Almighty ALLAH, whom I owe everything, for his generousness and support through all my life.

I would like to thank Prof. Essam E. Khalil, Dr. Hatem Kayed Haridy and Dr. Taher Mohamed Abou-deif for their guidance and unremitting encouragement. I am grateful to them, and to all my respectful professors, for mentoring me throughout my graduate study.

I extend my gratitude to Eng. Alaa Mohamed Abdel-Raziq for his valuable suggestions and noteworthy discussions. Thanks are also to my colleagues for their encouragement and support.

Finally, I owe a lifelong debt to my parents for their motivation through finishing this thesis and their patience and care and for maintaining a perfect environment for study and research.

Table of Contents

Acknowledgmentv
LIST OF TABLESiv
Nomenclaturex
Symbol Quantityx
Greek Lettersx
Abbreviationsxi
Chapter 1 Introduction
1.1.1 Energy density
1.1.2 Micro-satellite thrusters
1.1.3 Micro-air vehicles
1.1.4 Micro reactors
1.1.5 MEMS and communication systems
1.1.6 Energy density for various power sources
1.2 Scaling Parameters of Micro-scale Combustion
1.2.1 Length scale
1.2.2 Flame quenching diameter scale
1.2.3 Device scale
1.3 Development and Challenges of Micro-power Generation
1.4 Improving Micro-Combustors Efficiencies
1.5 Challenges in Fundamental Research of Micro-scale Combustion
1.6 Thesis Outline
Chapter 2 Literature review
2.1 Literature Investigating Combustion Characteristics of Non-premixed Micro-jet Methane Flame at Different Fuel Flow Velocities
2.2 Literature Discussing the Effect of Fuel Flow Velocity and Premixed Fue on Thermal and Chemical Structures of Micro Hydrogen-air Jet Flames 17
2.2.1 Influence of fuel flow velocity on the flame height and OH radica concentration

2.2.2 Detailed flame structure formed inside the burner	19
2.2.3 Slight premixed effect	20
2.3 Experimental Study on the Unique Stability Mechanism via Minia Micro Jet Diffusion Flames by Utilizing Preheated Systems	
2.3.1 Role of burner as heat recirculation medium	26
2.3.2 The effect of slight addition of O_2 (at $T_{air} = 920k$)	29
2.4 Scope of Current Work	31
Chapter 3 Modeling of Micro-Scale Flame	32
3.1 Description of the Adopted Experimental System	32
3.1.1 Cheng's Experiment Layout	32
3.1.2 Instruments used by ChengError! Bookmark not d	efined.
3.2 System Modeling	33
3.3 Governing Equations	33
3.3.1 Mass Conservation Equation (Continuity)	33
3.3.2 Momentum Equation	34
3.3.3 Navier-Stokes Equation	35
3.3.4 Energy Equation	35
3.3.5 Equation of state	38
3.4 Heat Transfer for solid	39
3.4.1 Conduction heat transfer for a solid	39
3.4.2 Convective heat transfer to solids	39
3.5 Reaction Mechanism	40
Chapter 4 Numerical Investigation Principles	44
4.1 Validation of ANSYS and Grid Sensitivity Analysis	44
4.1.1 The validation for ANSYS and grid sensitivity analysis experiment of Cheng	
4.1.1.1 Validation input data	44
4.1.1.2 ANSYS simulation results	47

4.2 Computational Domain Used in Current Study	57
4.3 Boundary Conditions Used in Current Study	58
Chapter 5 Results and discussion	59
5.1 Effect of Different Chemical Reaction Mechanisms	59
5.2 Thermal Structure of Micro-jet Flame under Different Burner Materials 6	57
5.2.1 Thermal structure of micro low fuel ejecting velocity flame	57
5.2.2 Thermal structure of micro high fuel ejecting velocity flame	71
5.3 Thermal and Chemical Structure under Different Fuels	74
Chapter 6 Conclusions and Suggested Future Work	76
6.1 Conclusions	76
6.2 Suggested Future Work	77
References	78
Appendix A: Deutschmann Reaction Mechanism	33
Appendix B: GRI-MECH 3.0 Reaction Mechanism	36

LIST OF TABLES

Table 1.1 Definition of micro-scale and mesoscale combustion using	different length
scales	5
	42
Table 4.1: Series of grid simulations	
Table 5.1: Case studies	57
Table 5.2: Reaction mechanisms	57
Table 5.3: Maximum temperature for different cases	69
Table 5.4: Maximum solid tube temperature	71
Table 5.5: Fuel types	72
Table 5.6: Maximum temperature for case (11) and case (12)	73

LIST OF FIGURES

Figure 1. 1: Comparison of specific energy densities of lithium ion batteries with hydrocarbon and oxygenated hydrocarbon fuels as well as different engines [2]
Figure 1. 2: Temperature distributions of the swirling burner and heat recirculation burner
<i>6</i>
Figure 2. 1: Schematic of the experimental system. [54]
Figure 2. 2: Physic model, computation domain and boundary conditions. [54]
Figure 2. 3: Direct images of micro-jet flames at different fuel flow velocities. (a: 18.3 m/s, b: 7.5 m/s, c: 2.5 m/s, d: 1.2 m/s). [54]
Figure 2. 4: Variations of flame height and shape with fuel flow velocity. [54]
Figure 2. 5: Variations of flame height with fuel flow velocity at different coflow air velocities. [54]
Figure 2. 6: Flammable region of the micro-jet flame at different coflow air velocities [54]
Figure 2.7: The CH distributions of flames at different velocities by experiments (upper) and computations. (a: 5 m/s, b: 2.5 m/s, c: 1.2 m/s, experimental and numerical results are shown in the same scale) [54]
Figure 2. 8: The OH distributions of flames at different velocities by experiments (upper) and computations (lower). (a: 5 m/s, b: 2.5 m/s, c: 1.2 m/s) [54]
Figure 2.9 :schematic view of computational domain and boundary conditions [55] 18
Figure 2. 10: Effect of applied fuel flow velocity on the flame height (vertical lines stands for stoichiometric mixture fraction, $\zeta_{st} = 0.0284$) and the distribution of mass fraction of OH along the axis. [55]
Figure 2. 11: 2-D temperature and mass fraction of H-atom distributions for different fuel ejecting velocities ((a) $uin = 2.5 \text{ m/s}$ and (b) $uin = 0.25 \text{ m/s}$) [55]
Figure 2. 12: Comparisons of 2-D profiles of reaction rates [kgmol/m3s] (a-d) temperature [K] (e), and mass fraction of H2O2 (f) with/without O2 addition cases (left 5% of O2 is added into the fuel flow, right: pure hydrogen is used as the fuel). [55] 21
Figure 2. 13: Schematic illustration of experimental apparatus [56]
Figure 2. 14: Direct photograph of the micro flames under three preheated air temperature conditions ($T_{air} = 293 \text{ K}, 570 \text{ K}, 920 \text{ K}$) and various fuel flow rates [56]

Figure 2. 15: Definitions of the quenching distance (L_q) and the flame height (L_f) (Tair = 293 K) [56]
Figure 2. 16:Relationship between minimum fuel flow rate and thermal conductivity of burner wall (Tair = 293 K) [56]
Figure 2. 17: Relationship between the limiting value of fuel flow rate (V_{Lf}) and the imposed preheated-air temperature, T_{air} [56]
Figure 2. 18: Relationship between the limiting flame height and the limiting quenching distance under all tested conditions considered in this study [54]
Figure 2. 19: Typical temperature distribution of micro-flames under two preheated air temperature conditions ((I) Tair = 293 K and (II) Tair = 670 K) [56]
Figure 2. 20 Variation of conductive heat flux against the imposed fuel flow rate under three preheated air temperature conditions (Tair = 293 K, 500 K, 670 K) [56]
Figure 2. 21: Temperature at the burner tip (left: T _w , right: T _w -T _{air}) [56]
Figure 2. 22: Direct image of flames with/without the slight premixing effect at 920 K of preheated air temperature (a) w/o premixing and (b) 7.3% of O2 added to the fuel [56] 30
Figure 2. 23: Effect of slight premixing on minimum fuel flow rate and flame luminosity at the extinction under 920 K of preheated air temperature [56]
Figure 3. 1: Schematic diagram of UV Raman/LIPF system [57]
Figure 4. 1: Coordinate system
Figure 4. 2: Grid system for (a)Case 1 simulation, (b) Case 2 simulation and (c) Case 3 simulation
Figure 4. 3: N2 concentration variation with radial distance at X=50 mm
Figure 4. 4: H2O concentration variation with radial distance at X=50mm
Figure 4. 5: O2 concentration variation with radial distance at X=50mm
Figure 4. 6: H2 concentration variation with radial distance at X=50mm
Figure 4. 7: Hydroxyl radical concentrations (OH) variation with radial distance at X=50mm. 49
Figure 4. 8: Temperature variation with radial distance at X=50mm
Figure 4. 9: N2 concentration variation with radial distance at X=25 mm
Figure 4. 10: H2O concentration variation with radial distance at X=25 mm

Figure 4. 12: H2 concentration variation with radial distance at X=25 mm
Figure 4. 13: Hydroxyl radical concentrations (OH) variation with radial distance at X=25mm
Figure 4. 14: Temperature variation with radial distance at X=25mm
Figure 4. 15: N2 concentration variation with radial distance at X=5 mm
Figure 4. 16: H2O concentration variation with radial distance at X=5 mm
Figure 4. 17: O2 concentration variation with radial distance at X=5 mm
Figure 4. 18: H2 concentration variation with radial distance at X=5 mm
Figure 4. 19: Hydroxyl radical concentrations (OH) variation with radial distance at X=5mm
Figure 4. 20: Hydroxyl radical concentrations (OH) variation with radial distance at X=5mm. 56
Figure 4. 21: LIPF-OH image and computed OH concentration
Figure 4. 22: Schematic illustration of computational domain with boundary conditions. 57
Figure 5. 1: Comparisons of the computed and measured N2 and H2 concentrations at X=5 mm. 60
X=5 mm. 60 Figure 5. 2: Comparisons of the computed and measured O2 and H2O concentrations at
X=5 mm. 60 Figure 5. 2: Comparisons of the computed and measured O2 and H2O concentrations at X=5 mm. 60
X=5 mm. 60 Figure 5. 2: Comparisons of the computed and measured O2 and H2O concentrations at X=5 mm. 60 Figure 5. 3: Comparisons of the computed and measured OH concentration at X=5 mm. 61
X=5 mm. 60 Figure 5. 2: Comparisons of the computed and measured O2 and H2O concentrations at X=5 mm. 60 Figure 5. 3: Comparisons of the computed and measured OH concentration at X=5 mm. 61 Figure 5. 4: Comparisons of the computed and measured temperature at X=5 mm. 61 Figure 5. 5: Comparisons of the computed and measured N2 concentrations at X=25 mm.
X=5 mm. 60 Figure 5. 2: Comparisons of the computed and measured O2 and H2O concentrations at X=5 mm. 60 Figure 5. 3: Comparisons of the computed and measured OH concentration at X=5 mm. 61 Figure 5. 4: Comparisons of the computed and measured temperature at X=5 mm. 61 Figure 5. 5: Comparisons of the computed and measured N2 concentrations at X=25 mm. 62 Figure 5. 6: Comparisons of the computed and measured H2, H2O and O2 concentrations
X=5 mm
X=5 mm

Figure 5. 10: Comparisons of the computed and measured H2, H2O and O2 concentrations at X=50 mm. 64
Figure 5. 11: Comparisons of the computed and measured OH concentration at X=50 mm. 65
Figure 5. 12: Comparisons of the computed and measured temperature at X=50 mm 65
Figure 5. 13: Temperature distribution and radical concentration using Case (1) Deutschmann reaction mechanism and Case (2) GRI-MECH 3.0
Figure 5. 14: 2-D temperature distributions for different burner materials; case (3) titanium, (4) stainless steel, (5) aluminum and (6) copper. Adopted fuel ejecting velocity 5 m/s
Figure 5. 15: Flame structure near burner port; case (3) titanium burner, (4) stainless steel burner, (5) aluminum burner and (6) copper burner
Figure 5. 16: Computational axial flame temperature at different burner materials along axial axis. Adopted fuel ejecting velocity 5 m/s
Figure 5. 17: Computational temperature distribution of solid tube for different burner materials; case (3) titanium, (4) stainless steel, (5) aluminum and (6) copper. Adopted fuel ejecting velocity 5 m/s
Figure 5. 18: Computational axial temperature of solid tube for different burner materials. Adopted fuel ejecting velocity 5 m/s
Figure 5. 19: 2-D temperature distributions for different burner materials; Case (7) titanium, (8) stainless steel, (9) aluminum and (10) copper. Adopted fuel ejecting velocity 36 m/s
Figure 5. 20: Computational temperature distribution of solid tube for different burner materials; Case (7) titanium, (8) stainless steel, (9) aluminum and (10) copper. Adopted fuel ejecting velocity 36 m/s
Figure 5. 21: Computational axial flame temperature at different burner materials. Adopted fuel ejecting velocity 36 m/s
Figure 5. 22: comparison between temperature distributions and radical concentration for case (1) and case (11)

Nomenclature

Symbol Quantity

c_{p}	Constant pressure specific heat, (J/Kg.K)
c_s	Solid material specific heat, (J/Kg.K)
g	Acceleration of gravity, (m/sec ²)
h	Enthalpy; heat transfer coefficient, (J/Kg)
K	Thermal conductivity, (W/m.C ^O)
L	Length scale, (m)
M_{α}	Molecular weight of gas speciesα, (Kg/Kmole)
\dot{m}_a	Air mass flow rate, (Kg/sec)
$\dot{m}_{\rm f}$	Fuel mass flow rate, (Kg/sec)
$\mathbf{n}_{\mathbf{x}}$	Number of grid cells in x-direction
n_y	Number of grid cells in y-direction
p	Pressure, (Pa)
R	Universal gas constant, (J/Kg.K)
Re	Reynolds number
T	Temperature, (K)
$T_{\rm w}$	Temperature at the wall, (K)
t	Time, (sec)
X	(x, y, z) Position vector, (m)
X_{α}	Volume fraction of species α
Y_{α}	Mass fraction of species α

Greek Letters

∇	Gradient
λ	Wave length
μ	Dynamic viscosity
ρ	Density
σ	Stefan-Boltzmann constant

Superscripts and Subscripts

 Δ Change interval of any property

 ∞ Ambient property f Fuel property flow property g Gas property

ij Indicates two different Cartesian coordinates

w Wall property

 $\alpha_{x,y}$ Property for species α

Abbreviations

CFD Computational Fluid Dynamics

HCCI Homogeneous Charge Compression Ignition

MEMS Micro-Electro-Mechanical Systems

SSME Space Shuttle Main Engine