Low Profile Ilizarov Frame in Correction of Varus Deformity in Patients With Adolescent Blount's Disease

Thesis

Submitted For Partial Fulfillment of Master Degree in Orthopedic Surgery

BY

Mustafa Farouk Abd Alkader

M.B.Ch.B Baghdad University

Supervised by

Prof. Dr. Mootaz Fouad Thakeb

Professor of Orthopedic Surgery
Faculty of Medicine- Ain Shams University

Dr. Ahmad Saeed Aly

Lecturer of Orthopedic Surgery
Faculty of Medicine- Ain Shams University

Faculty of Medicine

Ain Shams University

2018

Acknowledgement

First and for most, thanks to **Allah**, the most merciful the most gracious for helping me to complete this work.

I wish to express my deepest gratitude to

Professor Dr. Mootaz Fouad Thakeb

professor of Orthopedic Surgery, Faculty of

Medicine, aim shams University, for his constant
guidance, Constructive supervision and following the
performance and progress of this thesis. I much benefited
from his creative thinking.

I am greatly indebted to **Dr.Ahmad Saeed Aly**,

lecturer of Orthopedic Surgery, Faculty of Medicine, aim shams University, for his constant guidance and valuable opinions, suggestions and constructive criticism.

I am greatly indebted to Dr.Khalid Abdelghaffar Omar Alabd, lecturer of Orthopedic Surgery, Faculty of Medicine, aim shams University, for his constant guidance and valuable opinions, suggestions and constructive criticism.

Contents

Topic	Page
1. Introduction	1
2. Aim of the work	4
3. Review of literature	5
Bone development	5
• Gross anatomy	13
Physeal growth plate	20
Deformity analysis of the lower limb	26
Blount disease	40
4. Patients and methods	70
5. Results	82
6. Case presentation	91
7. Discussion	100
8. Summary & Conclusion	110
9. References	114
10.Arabic summary	1

List of abbreviations

ACL	anterior cruciate ligament.
AP	anteroposterior.
CORA	centre of rotation of angulation.
EFT	external fixation time.
FDO	focal dome osteotomy.
FshA	femoral shaft axis.
JLCA	joint line convergence angle.
LAT	lateral.
LCL	lateral collateral ligament.
LDFA	lateral distal femoral angle.
LDTA	lateral distal tibial angle.
LLD	limb length discrepancy.
LOTV	late onset tibia vara.
MAD	mechanical axis deviation.
MAF	mechanical axis of the femur.
MA-LE	mechanical axis of lower extremity.
MAT	mechanical axis of the tibia.
MCL	medial collateral ligament.
MPTA	medial proximal tibial angle.
PCL	posterior cruciate ligament.
PPTA	posterior proximal tibial angle.

S	Significant.
SD	standard deviation.
SCO	straight cut osteotomy.
TFA	thigh foot angle.
TSF	Taylor spatial frame.
TshA	tibial shaft axis.
TTT	total treatment time.

List of Tables

Table	page
I. Patients' master sheet	81
II. Age distribution	82
III. Side affection	83
IV. Paired t test for comparsion between pre and post operative scores as regard MPTA	84
V. Paired t test for comparsion between pre and post operative scores as regard PPTA	85
VI. Paired t test for comparsion between pre and post operative scores as regard MAD	86
VII. Paired t test for comparsion between pre and post operative scores as regard TFA	87
VIII. External fixation time	88
IX. preoperation measurement of angles of deformity case number 1	91
X. postoperation measurement of angles of deformity case number 1	92
XI. preoperation measurement of angles of deformity case number 2	94
XII. postoperation measurement of angles of deformity case number 2	95
XIII. our study compared with other studys	109

List of Figures

Figure	Page
1. Stages of bone formation	6
2. Physeal growth plate	9
3. Histoanatomy of the growth plate.	11
4. Blood supply of the epiphyseal plate.	12
5. Tibial surface.	14
6. Bony landmarks with ligaments and tendons attachment sites on (A) the anterior (B) medial (C) lateral (D) posterior aspects of the knee.	18
7. Tibiofemoral joint.	19
8. Section in growth plate	21
9. Effect of mild axial deviation on growth plate mechanics	24
10. Frost's theoretical cartilage growth force responce	25
11. Anatomical axis of the femur.	26
12. Mechanical axis of the femur.	27
13. Anatomical and mechanical axes of the tibia	27
14. Mechanical axis of the lower limb	28
15. Joint line convergence angle	29
16. Femoral joint angle and tibial joint angle, JLCA, MAD	31
17. Schematic diagram showing the zones of the mechanical axis. L = lateral, and M = medial.	32
18. Example for detection site of deformity	33
19. Center of rotation of angulation.	35
20. Clinical assessment of LLD	37
21. Thigh foot angle	38
22. Langenskiold stages	41
23. Radiograph of a thirteen-years old girl who had adolescent Blount disease with distal femoral varus and proximal tibial deformity as well as 2 cm of limb shortening.	46

24. Scanogram on both lower limbs of 12 years old male had adolescent Blount disease	47
25. T1-weighted MR images show abnormal metaphyseal signal intensity in the distal femur and proximal tibia (arrowheads).	48
26. Long leg bracing	50
27. Different method of fixation after high Tibial and Fibular Osteotomyin infantile Blount disease	51
28. Surgical technique of hemiplateau elevation.	53
29. Mechanical failure of tension band plate	56
30. Acute correction of adolescent Blount disease in 16 years old male patient	60
31. Gradual correction strategy using TSF	62
32. Modified monolateral fixators	65
33. Taylor spatial frame (TSF)	66
34. Ilizarov juxta articular hinge assembly	69
35. Femoral joint angle and tibial joint angle, JLCA, MAD	71
36. Fibular osteotomy	73
37. External fixator frame	74
38. Tibial osteotomy	76
39. Post operative weight bearing.	77
40. Fixator removal	78
41. Gender distribution	82
42. Distribution of unilateral and bilateral cases	83
43. Pre and post operative scores as regard MPTA	84
44. Pre and post operative scores as regard PPTA	85
45. Pre and post operative scores as regard MAD	86
46. Pre and post operative scores as regard TFA	87
47. Superficial pin tract infection	89
48. Preoperative clinical photos of case NO 1	91
49. Preoperative X-ray and scanogram of case NO 1	91
50. Postoperative X-ray after 4 weeks of case NO 1	92
51. Postoperative X-ray after 8 weeks of case NO1	92

52.Postoperative X-ray after 12 weeks of case NO 1	93
53. Postoperative scanogram after 6 months of case NO 1	93
54. Postoperative scanogram after 12 months of case NO1	93
55. Postoperative clinical photos of case NO 1	94
56. Preoperative clinical photos and X-ray of case NO2	95
57. Postoperative scanogram of case NO 2	96
58. Postoperative X-ray after 6weeks of case NO 2	97
59. Postoperative X-ray after 10 weeks of case NO 2	97
60. Postoperative clinical photograph after 10 weeks of case NO 2	98
61. Postoperative X-ray 12 weeks of case NO2	98
62. Postoperative clinical photos of case NO 2	99
63. Postoperative scanogram of case NO 2	99

ABSTRACT

Introduction: Adolescent Blount disease or late onset tibia vara constitutes the most common cause of pathologic genu varum in late childhood and adolescence. It is a developmental condition characterized by disordered endochondral ossification of the posteromedial part of the proximal tibial physis resulting in multiplanar deformities of the lower limb

Aim of the work: The aim of this study wasto evaluate the results of acute correction of Adolesent Blount disease by using low profile Ilizaroy frame.

Patients and Methods: Equipment used It is a prospective study for 10 patients who had adolescent Blount disease treated by acute correction using low profile Ilizarov frame. We looked principally into the following variables to evaluate the results of the treatment: Deformity correction (expressed as mechanical axis restoration), the average normal values were used as a reference (medial proximal tibial angle, 85–90; posterior proximal tibial angle, 77–84; thigh–foot angle, +10 external rotation)

Keywords: Blount disease , Low profile Ilizarov , acute correction

Introduction

Adolescent Blount disease or lateonset tibia vara constitutes the most common cause of pathologic genuvarum in late childhood and adolescence. It is a developmental condition characterized by disordered endochondral ossification of the posteromedial part of the proximal tibial physis resulting in multiplanar deformities of the lower limb⁽¹⁾.

In 1922, Erlacher⁽²⁾ is credited with the first description of progressive tibialvarus deformity in otherwise healthy children.

In 1937, Blount⁽³⁾ reviewed previous reportsadding his own cases. He was the first to identify two forms of this disorder; infantile and adolescent (late onset)and coined the term "osteochondrosisdeformans tibiae". However, the conditionalso referred to as "tibia vara" in the literature, is often referred to as Blount disease.

Langenskiold⁽⁴⁾ made significant earlycontributions to the identification and management of infantile Blount disease in 1964. He described a prognostic radiographic lassification system.

Although Blount coined theterm tibia varaimplying a solely frontal plane deformity, subsequentauthors noted that multiplanar deformities are commonlyseenwith this condition. Secondary to the asymmetricalgrowth with relative inhibition of the posteromedial portion of the proximal tibial growth plate, a three dimensional deformity of the tibia with varus, procurvatum (apex anterior), and internal rotation develops, along with possible limb shortening in unilateral cases (5,6).

This entity can lead to a progressive deformity with gait deviations, limblength discrepancy, and premature arthritis of the knee^(7,8).

Two clinically distinct forms ofBlount disease; earlyonset(infantile) and lateonset have been described, with the classifications based on whether the limb deformity develops before or afterthe age of four years^(3,4,9).

Thompson and Carter⁽⁹⁾ further classified lateonset Blount disease as a juvenile type (onset at theage of four to ten years) and an adolescent type (onset after theage of ten years).

Bilateral involvement is common, particularlywith an earlyonsetpresentation⁽⁶⁾. Although there are clinical and radiographic differences between early and lateonsetBlount disease, there are several similarities, including apredisposition for obese black children. Also, there are comparable histologic findingsat the proximal tibial growth plate⁽⁹⁻¹¹⁾.

The prevalence of adolescent Blount disease may be as high as 2.5% in the population at greatest risk, obese black males ^(12,13). Incidence may furthermore be escalating because of the increasing prevalence of morbid obesity in western society ⁽¹⁴⁾. Male: female ratio of 4:1 and over 90% of patients obeseand black ⁽¹⁵⁻¹⁶⁾.

It is postulated that the medial femoral physis also suffers growth inhibition due to the high loads through the medial knee joint particularly in older obese patients with a fat thigh gait⁽¹⁷⁾.

Several treatment modalities were described for these cases as proximal tibialosteotomy, growth modulation, and medial plateau elevation that are either carried out as an isolated procedure or in combination with other osteotomies⁽¹⁸⁻²⁰⁾.

Proximaltibial osteotomy is still the standard surgical management for late onset cases where the researchers observed that the proximal tibialphysis typically grow symmetrically following this osteotomy ^(21,22, 26). Methods of fixation of the osteotomy have changed, from plaster alone to include limited internal fixation with Steinmann pins, stable internal fixation with compression plates or external fixation.

Due to the difficulties associated with obesity in lateonset Blount disease, external fixators have become a popular fixation method, including monolateral and circular fixators. The deformity correction using external fixation can be done either acutely or gradually (23,24,25). While the gradual correction strategy using distractionosteogenesis has its crucial indication in certain situations like addressing severe deformity or a coincident significant anatomical limb length discrepancy, as it requires a high degree of patient compliance and still has its recorded complications (27,28). Conversely, patients should be more compliant to acute correction strategy and requires less regular follow up visits, but it needs proper case selection