

PLANT-WIDE MODELING FOR GABAL EL ASFAR WWTP "CONTRACT 19" OPTIMIZATION

By

Mohamed Sherief Shawki Abo-Zaid

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Civil Engineering - Public Works

PLANT-WIDE MODELING FOR GABAL EL ASFAR WWTP "CONTRACT 19" OPTIMIZATION

By

Mohamed Sherief Shawki Abo-Zaid

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Civil Engineering – Public Works

Under the Supervision of

Prof. Dr. Hisham Sayed Abdel Halim

Professor of Sanitary & Environmental
Engineering
Public Works Department
Faculty of Engineering, Cairo University

Dr. Abdel Salam El Awwad

Associate Professor of Sanitary &
Environmental Engineering
Public Works Department
Faculty of Engineering, Cairo University

Dr. Minerva Edward

Assistant Professor of Sanitary & Environmental Engineering Public Works Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

PLANT-WIDE MODELING FOR GABAL EL ASFAR WWTP "CONTRACT 19" OPTIMIZATION

By

Mohamed Sherief Shawki Abo-Zaid

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Civil Engineering – Public Works

Approved by the Examining Committee

Prof. Dr. Hisham Said Abdel Halim, Thesis Main Advisor

Dr. Mona Mohamed Galal El-Din Ibrahim, Internal Examiner

Prof. Dr. Mustafa Mohamed Abd Elmoneam Ashmawy, External Examiner Professor of Sanitary & Environmental Engineering, Faculity of Engineering El Matareya, Helwan, University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 Engineer's Name: Mohamed Sherief Shawki Abo-Zaid

Date of Birth: 01/01/1992. **Nationality:** Egyptian

E-mail: eng2abozaid@gmail.com/

Eng_Abozaid@hotmail.com

Phone: 01062216063

Address: 8 Shokry, El Haram, Giza, Egypt

Registration Date: 01/10/2014 **Awarding Date:**/2018 **Degree:** Master of Science

Department: Civil Engineering - Public Works

Supervisors:

Prof. Dr. Hisham Sayed Abdel Halim

Dr. Abdel Salam El Awwad

Dr. Minerva Edward

Examiners:

Prof. Dr. Hisham Sayed Abdel Halim (Thesis main advisor)

Dr. Mona Galal El-Din Ibrahim (Internal examiner)

Prof. Dr. Mustafa Mohamed Abd Elmoneam Ashmawy (External examiner)

Professor of Sanitary & Environmental Engineering, Faculty of

Engineering El Matareya, Helwan, University

Title of Thesis:

Plant-Wide Modeling For Gabal El Asfar Wastewater Treatment Plant "Contract 19" Optimization

Key Words:

Wastewater Treatment; Activated Sludge; Modeling; Treatment Process Optimization; BioWin

Summary:

This master's thesis introduces the Plant Wide modeling of Gabal El Asfar wastewater treatment plant (Contract 19) for process optimization purposes, The modeling equations were based on the BioWin Model and the Good Modeling Practice Protocol has been followed. The results after calibration showed that the BioWin Model can be used to model the whole plant with an accuracy high enough to be used in the treatment processes optimization which leads to better effluent characteristics or operation cost reduction while maintaining high effluent quality.

Acknowledgments

First of all, I would like to thank God, the Almighty, for giving me patience, strength, guidance and for helping me overcome every obstacle in my way.

I would like to express my great appreciation and gratitude to Professor Hiasham Abdel Halim, Dr.Abdel Salam El Awwad and Dr.Minerva Edward my research supervisors, for educating and enlightening me starting from my studying years in Cairo University till my post graduate studies and for their patient guidance, enthusiastic encouragement, and useful critiques during my master's thesis work.

I am particularly grateful for the hospitality and assistance of Eng.Abdel Wahab Helmy, Head of Gabal El Asfar WWTP, Eng. Maher Gamal, Head of the WWTP Laboratory, and Eng.Ahmed Omara, The operation and maintenance engineer, during the data collection period .

Finally I would like to express my deepest gratitude and love to my family, for their support, love and encouragement throughout my whole life, which is the base reason behind any accomplishment in my life.

Table of Contents

ACKNOWL	EDGMENTS	I
TABLE OF	CONTENTS	II
LIST OF TABLES		
LIST OF FIG	GURES	V
NOMENCLA	ATURE	VIII
ABSTRACT	•••••••••••	XI
CHAPTER 1	: INTRODUCTION	1
1.1.	Overview	1
1.2.	PROBLEM STATEMENT	
1.3.	THESIS OUTLINE	
CHAPTER 2	2 : LITERATURE REVIEW	5
2.1.	WASTEWATER TREATMENT OVERVIEW	5
2.1.1.	Activated Sludge Treatment Process	
2.1.2.	Sludge Treatment and Anaerobic Stabilization	
2.2.	MATHEMATICAL MODELING OF TREATMENT PROCESSES	
2.2.1.	Activated Sludge Models	
2.2.2.	Anaerobic Digestion Models	
2.2.3.	Solids – Liquid Separation Models	
2.2.4.	Plant Wide Modeling	19
2.2.5.	BioWin General Model	20
2.2.6.	Modeling Protocols of WWTP Processes	21
2.3.	GOOD MODELING PRACTICE UNIFIED PROTOCOL	23
2.3.1.	Project Definition	24
2.3.2.	Data Collection and Reconciliation	25
2.3.3.	Plant Model Set-up	26
2.3.4.	Calibration and Validation	27
2.3.5.	Simulation and Result Interpretation	29
2.4.	WASTEWATER CHARACTERIZATION	30
2.5.	WASTEWATER TREATMENT OPTIMIZATION BY MODELING	33
2.5.1.	Energy Efficiency Optimization of Activated Sludge Processes	34
2.5.2.	Biogas Production Process	
CHAPTER 3	3: METHODOLOGY	37
3.1.	GAWWTP PROCESS DESCRIPTION	37
3.1.1.	Wastewater Works Treatment	40
3.1.2.	Sludge Works Treatment	46
3.2	HISTORICAL WASTEWATER ANALYSIS	50

3.2.1.	Plant performance Assessment	55
3.3.	SAMPLING CAMPAIGN	56
3.4.	WASTEWATER CHARACTERIZATION	61
3.5.	BIOWIN MODELS	64
3.6.	MODEL CALIBRATION	69
3.7.	MODEL VALIDATION	70
3.8.	SCENARIOS SIMULATIONS FOR OPTIMIZATION	71
CHAPTER 4	4: RESULTS & DISCUSSION	73
4.1.	STOWA PROTOCOL WASTEWATER CHARACTERIZATION	73
4.2.	MODEL CALIBRATION RESULTS	74
4.3.	MODEL VALIDATION RESULTS	77
4.4.	ONE YEAR HISTORICAL DATA SIMULATION	92
4.5.	OPTIMIZATION STUDY	98
4.5.1.	Optimization Plan to Achieve Nitrification - Denitrification	104
4.5.2.	Optimization Plan to Achieve Decreased Operational Cost	110
CHAPTER 5	5 : CONCLUSION & RECOMMENDATION	118
5.1.	Conclusion	118
5.2.	RECOMMENDATION	119
REFERENC	'ES	120

List of Tables

Table 3-1: Inlet IWPS Average Monthly Historical Analysis	52
Table 3-2: PST Effluent Average Monthly Historical Analysis	53
Table 3-3: Treated Effluent To Gabal Drain Historical Analysis	54
Table 3-4: Raw Water Influent to Primary Sedimentation Tank Sampling Campaign	
Statistical Analysis Results	57
Table 3-5: Settled Water Effluent from the Primary Sedimentation Tank Sampling	
Campaign Statistical Analysis Results	58
Table 3-6: Effluent from Aeration Tanks Sampling Campaign Statistical Analysis Resu	ılts
Table 3-7: Effluent from Final Sedimentation Tanks Sampling Campaign Statistical	
Analysis Results	
Table 3-8: Supernatant from Mechanical Dewatering House to Primary Sedimentation	
Tank Sampling Campaign Statistical Analysis Results	59
Table 3-9: DAF Under Flow to the Aeration Tanks Sampling Campaign Statistical	
Analysis Results	60
Table 3-10: Thickener Supernatant to Primary Sedimentation Tank Sampling Campaig	'n
Statistical Analysis Results	
Table 3-11: Effluent from the Secondary Digester to the Mechanical Dewatering House	
Sampling Campaign Statistical Analysis Results	60
Table 3-12: Produced Sludge from the Mechanical Dewatering Sludge Sampling	
Campaign Statistical Analysis Results	61
Table 3-13: Raw wastewater Default charecterization parameters	
Table 3-14: Settled wastewater Default charecterization parameters	64
Table 4-1: Characterization parameters used in the BioWin plant wide model	73
Table 4-2: Actual Measured WWTP Effluent Values and The Calibrated Model Result	s.
	74
Table 4-3: Actual and Simulated Aeration Tanks MLSS & MLVSS Results	
Table 4-4: Actual and Simulated Anaerobic Digester and Sludge Production Results	
Table 4-5: calibrated stoichiometric and kinetic parameters	76
Table 4-6: Anaerobic Digester and Sludge Production Results:	
Table 4-7: Multiple Operational Configurations:	
Table 4-8: Optimization Plan Results for Nitrification - Denitrification 1	
Table 4-9: Optimization Plan Results for Decreased Aeration	
Table 4-10: Aeartion Electrical requirmments From BioWin Results: 1	.12

List of Figures

Figure 1.1: GAWWTP Effluent Water path to El Manzala Lake (Arabic Development
Bank, 2007)
Figure 1.2: Gabal El Asfar WWTP (Adopted from Google Earth)
Figure 2.1: Basic concept of the activated sludge process (Govoreanu, 2004)
Figure 2.2: Anaerobic Digester simplified figure (Tchobanoglous, Burton, & Stensel,
2003)
Figure 2.3: Basic Diagram of Anaerobic Digestion Processes (Verma, 2002)
Figure 2.4: Simplified process schematic of a typical large WWTP (Raymond, 2012) 11
Figure 2.5: Different representations of the same clarifier (Jeppsson U., 1996)
Figure 2.6: Simplified representation of HSG protocol, STOWA protocol and
BIOMATH protocol (Vanrolleghem, et al., 2003) (Hulsbeek, J. Kruit, & Loosdrecht,
2002) (Langergraber, et al., 2004)
Figure 2.7: GMP Project Definition Flowchart (Rieger, Shaw, Gillot, & Takács, 2012) 25
Figure 2.8: GMP Data Collection Flowchart (Rieger, Shaw, Gillot, & Takács, 2012) 26
Figure 2.9: GMP Model Setup Flowchart (Rieger, Shaw, Gillot, & Takács, 2012) 27
Figure 2.10: GMP Calibration and Validation Flowchart (Rieger, Shaw, Gillot, &
Takács, 2012)
Figure 2.11: STOWA Protocol Calibration Parameters (Hulsbeek, J. Kruit, &
Loosdrecht, 2002)
Figure 2.12: GMP Simulation and Results Interpretation Flowchart (Rieger, Shaw, Gillot, & Takács, 2012)
Figure 2.13: Wastewater Characterization for Carbonaceous Components (Jeppsson U.,
1996)
Figure 2.14: The Biological Decomposition Chain (Jeppsson U., 1996)
Figure 2.15: Wastewater Characterization for Nitrogenous Components (Jeppsson U.,
1996)
Figure 3.1: GAWWTP Contract 19 Satellite image (Adopted from Google Earth) 37
Figure 3.2: Process Flow Diagram of GAWWTP Contract 19
Figure 3.3: General Layout of GAWWTP Contract 19 (Degremont, 2001a)
Figure 3.4: Preliminary Treatment Units in GAWWPT contract 19 (Adopted from
Google Earth)
Figure 3.5: 6 Primary Sedimentation Tanks in GAWWPT contract 19 (Adopted from
Google Earth)
Figure 3.6: GAWWTP contract 19, 8 Three Zoned Aeration Tanks (Adopted from
Google Earth)
Figure 3.7: Schematic DWG of the Current Aeration Plan of the 8 Aeration Tanks in
GAWWTP Contract 19
Figure 3.8: 8 Final Clarifiers in GAWWTP Contract 19 (Adopted from Google Earth). 44
Figure 3.9: Gravity Thickening Tanks in GAWWTP Contract 19 (Adopted from Google
Earth)
Figure 3.10: Dissolved Air Floatation Units in GAWWTP Contract 19 (Adopted from
Google Earth)
Figure 3.11: Two Digestion Blocks in GAWWTP Contract 19 (Adopted from Google
Earth)
Figure 3.12: STOWA protocol characterization equations (Roeleveld & Loosdrecht,
2002)

Figure 3.13: STOWA protocol characterization Influent Composition fractions	
(Roeleveld & Loosdrecht, 2002)	
Figure 3.14: BioWin model Layout for the secondary treatment in GAWWTP contraction	
Figure 3.15: BioWin model Layout for the primary and secondary treatment in GAWWTP contract 19	
Figure 3.16: Plant wide BioWin model Layout for GAWWTP contract 19	
Figure 3.17: Order of Steps during the Calibration Process (Hulsbeek, J. Kruit, &	
	69
Figure 3.18: The values of S_{ij} for the most sensitive parameters of the Calibrated BioV	
AS model (Liwarska-Bizukojc & Biernacki, 2010).	
Figure 3.19: Aeration tanks DO control panel in GAWWTP contract 19	
Figure 4.1: November 2016 Effluent Validation Curves for COD	
Figure 4.2: November 2016 Effluent Validation Curves for BOD	
Figure 4.3: November 2016 Effluent Validation Curves for TSS	
Figure 4.4: November 2016 Effluent Validation Curves for NH ₄	
Figure 4.5: November 2016 Effluent Validation Curves for TKN	
Figure 4.6: November 2016 Effluent Validation Curves for MLSS	
Figure 4.7: November 2016 Effluent Validation Curves for MLVSS	
Figure 4.8: September 2016 Effluent Validation Curves for COD	
Figure 4.9: September 2016 Effluent Validation Curves for BOD	
Figure 4.10: September 2016 Effluent Validation Curves for TSS	
Figure 4.11: September 2016 Effluent Validation Curves for NH ₄	
Figure 4.12: September 2016 Effluent Validation Curves for TKN	
Figure 4.13: September 2016 Effluent Validation Curves for MLSS	
Figure 4.14: September 2016 Effluent Validation Curves for MLVSS	
Figure 4.15: June 2016 Effluent Validation Curves for COD	88
Figure 4.16: June 2016 Effluent Validation Curves for BOD	
Figure 4.17: June 2016 Effluent Validation Curves for TSS	89
Figure 4.18: June 2016 Effluent Validation Curves for NH ₄	89
Figure 4.19: June 2016 Effluent Validation Curves for TKN	90
Figure 4.20: June 2016 Effluent Validation Curves for MLSS	90
Figure 4.21: June 2016 Effluent Validation Curves for MLVSS	91
Figure 4.22: Validated Model Effluent Simulation Results from June 2015 to May 20	16
Effluent for BOD	
Figure 4.23: Validated Model Effluent Simulation Results from June 2015 to May 20	
Effluent for COD	
Figure 4.24: Validated Model Effluent Simulation Results from June 2015 to May 20	
Effluent for TSS	
Figure 4.25: Validated Model Effluent Simulation Results from June 2015 to May 20	
Effluent for TKN	
Figure 4.26: Validated Model Effluent Simulation Results from June 2015 to May 20	
Effluent for NH ₄ ,	
Figure 4.27: Validated Model Effluent Simulation Results from June 2015 to May 20	
Effluent for MLSS	
Figure 4.28: Validated Model Effluent Simulation Results from June 2015 to May 20	
Effluent for MLVSS	
Figure 4.29: Schematic DWG of the Aeration Tank External Part Aeration Configuration	
for Scenario 11	101

Figure 4.30: Schematic DWG of the Aeration Tank External Part Aeration Configuration
for Scenario 12
Figure 4.31: Schematic DWG of the Aeration Tank External Part Aeration Configuration
for Scenario 13
Figure 4.32: Schematic DWG of the Proposed Aeration Plan of the 8 Aeration Tanks in
GAWWTP Contract 19 to Achieve Nitrification - Denitrification
Figure 4.33: The Effluent Comparison While applying the Nitrification – Denitrification
Optimization Plan & Before Applying the Optimization Plan for the BOD 106
Figure 4.34: The Effluent Comparison While applying the Nitrification – Denitrification
Optimization Plan & Before Applying the Optimization Plan for the COD 106
Figure 4.35: The Effluent Comparison While applying the Nitrification – Denitrification
Optimization Plan & Before Applying the Optimization Plan for the TSS 107
Figure 4.36: The Effluent Comparison While applying the Nitrification – Denitrification
Optimization Plan & Before Applying the Optimization Plan for the TKN 107
Figure 4.37: The Effluent Comparison While applying the Nitrification – Denitrification
Optimization Plan & Before Applying the Optimization Plan for the NH ₄ 108
Figure 4.38: The Effluent Comparison While applying the Nitrification – Denitrification
Optimization Plan & Before Applying the Optimization Plan for the MLSS 108
Figure 4.39: The Effluent Comparison While applying the Nitrification – Denitrification
Optimization Plan & Before Applying the Optimization Plan for the MLVSS
Figure 4.40: Schematic DWG of the Proposed Aeration Plan of the 8 Aeration Tanks in
GAWWTP Contract 19 to Decreased Aeration
Figure 4.41: The Effluent Comparison While applying the Decreased Aeration
Optimization plan & Before Applying the Optimization Plan for the BOD 113
Figure 4.42: The Effluent Comparison While applying the Decreased Aeration
Optimization plan & Before Applying the Optimization Plan for the COD113
Figure 4.43: The Effluent Comparison While applying the Decreased Aeration
Optimization plan & Before Applying the Optimization Plan for the TSS
Figure 4.44: The Effluent Comparison While applying the Decreased Aeration
Optimization plan & Before Applying the Optimization Plan for the TKN
Figure 4.45: The Effluent Comparison While applying the Decreased Aeration
Optimization plan & Before Applying the Optimization Plan for the NH ₄
Figure 4.46: The Effluent Comparison While applying the Decreased Aeration
Optimization plan & Before Applying the Optimization Plan for MLSS
Figure 4.47: The Effluent Comparison While applying the Decreased Aeration
Optimization plan & Before Applying the Optimization Plan for the MLVSS 116

Nomenclature

AOB Ammonia Oxidising Biomass

ARD Average Relative Deviation

PAOs Phosphorus Accumulating Organisms

SI Soluble Inert Organic Matter

STT Primary sludge thickening Tanks

XI Particulate Inert Organics

ANAMMOX Anaerobic Ammonia Oxidizers

CCT Chlorination Contact Tanks

OHOs Ordinary Heterotrophic Organisms

Ss Readily Degradable Organic Matter

Xp Particulate Inert Organics Derived from Biomass Decay

Xs Slowly Degradable Organic Matter

ADM Anaerobic Digestion Model

ASM Activated Sludge Model

AT Aeration Tank

BOD Biological Oxygen Demand

CH4 Methane Gas

CO2 Carbon Dioxide

COD Chemical Oxygen Demand

DAF Dissolved Air Flotation

DO Dissolved Oxygen

DPS Drainage Pump Station

EBPR Excess Biological Phosphorous Removal

FCT Final Clarifier Tank

FRDC First Receiption Destribution Chamber

FSPS Floated Sludge Pumping Station:

GAWWTP Gabal El Asfar Waste Water Treatment Plant

GGRT Grit & Grease Removal Tanks

GMP Good Modeling Practice protocol

H2S Hydrogen Sulphide

IAWPRC International Association on Water Pollution Research and Control

IPS Inlet Pumping Station

IWA International Water Association

IWPS Inlet Work Pumping Station

MDH Mechanical Dewatering House

MLSS Mixed Liqor Suspended Solids

MLSS Mixed Liquor Suspended Solids

MLVSS Mixed Liquor Volatile Suspended Solids

N Nitrogen

ND-EBPR Nitrification, Denitrification, and Excess Biological Phosphorous Removal

NH4 Ammonia

NO2 Nitrite

NO3 Nitrate

PST Primary Sedimentation Tank

RAS Return Activated Sludge

RASPS Return Activated Sludge Pumping Station

SRT Sludge retention time

STT Sludge Thickening Tank

T Temperature

TKN Total Keldahl Nitrogen

TSS Total Suspended Solids

VFA Volatile Fatty Acids

WASPS Waste Activated Sludge Pumping Station

WERF Water Environment Research Foundation

WWTP Wastewater Treatment Plant

Abstract

Wastewater Treatment plant (WWTP) modeling has been proved to be as very useful tool for understanding, optimizing and upgrading existing wastewater processes; Once a model is calibrated and successfully validated, it allows the operator to model different operation plans, understand the effect of those changes on the process operation and predict the expected results. A validated model can be quiet beneficial in terms of cost saving due to the prediction of the outcome of various operation scenarios without actual operation and can be used to perform optimization studies that can lead to better effluent characteristics.

In general, most wastewater treatment facilities are operated based on previous experience with different processes. Operational change decisions especially for large wastewater treatment plants should be executed with extreme care. Different operational routines have to be deeply investigated and multiple optimization alternatives have to be proposed and sufficiently studied for the purposes of operational cost minimization while maintaining the required effluent quality.

Gabal El Asfar Wastewater Treatment Plant (GAWWTP) in Cairo is considered the largest in Africa and among the few plants that applies anaerobic digestion methods successfully. Currently four projects are operated: Gabal El Asfar stage 1 phase 1 namely Contract 16 with 1 million m³/day capacity, complemented by Gabal El Asfar stage 1 phase 1 Optimization with a capacity of 300,000 m³/day and Gabal El Asfar contract 19 (Stage 2 phase 1) with a 500,000 m³/day capacity and a newly constructed WWTP namely stage 2 phase 2 of 500,000 m³/day capacity. Gabal El Asfar – Contract 19 is an activated sludge WWTP and it is the case study that will be modeled in this research.

Applying the Good Modeling Practice protocol showed clear organized steps for successful modeling of Gabal El Asfar wastewater treatment plant. Historical data and design reports have been collected and various site visits has been made in addition to a sampling campaign to perform important analysis that are not performed in the plant routine analysis for a proper wastewater characterization and a successful model calibration.

Using the BioWin version 5.1 software modeling that has its own general activated sludge-digestion model and contains 50 state variables and 60 process expressions spared us from coupling different models and lessened complexions in the Plant Wide Modeling process, The plan wide model was calibrated and validated.

After the model validation, multiple operation scenarios were investigated using the BioWin Plant Wide model and the results were used to derive operational plans for the activated sludge system for the purposes of aeration cost reduction while maintaining the required effluent quality or applying a nutrient removal operation plan. The BioWin model was successfully used for creating a plant wide model for Gabal El Asfar WWTP with accuracy high enough to perform optimization studies.