EMPLOYMENT OF SOME BACTERIAL VIRUSES FOR IMPROVEMENT OF QUALITY AND SAFETY OF SOME FOOD PRODUCTS

ABEER ABD EL-WAHAB FEISAL GAD EL-HAK

B.Sc. Agric. Sc. (Food Science), Cairo University, 2002 M.Sc. Agric. Sc. (Agricultural Virology), Ain Shams Univ., 2008

A thesis submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

in Agricultural Science (Agricultural Virology)

Department of Agricultural Microbiology Faculty of Agriculture Ain Shams University

Approval Sheet

EMPLOYMENT OF SOME BACTERIAL VIRUSES FOR IMPROVEMENT OF QUALITY AND SAFETY OF SOME FOOD PRODUCTS

By

ABEER ABD EL-WAHAB FEISAL GAD EL-HAK

B.Sc. Agric. Sc. (Food Science), Cairo University, 2002 M.Sc. Agric. Sc. (Agricultural Viruses), Ain Shams University, 2008

This thesis for Ph.D. degree has been approved 1	ee has been approved b	has	degree	ı.D.	Ph	for	thesis	This
--	------------------------	-----	--------	------	----	-----	--------	------

Dr.	Adel Mahmoud Hammad
Dr.	Sohair Ibrahim El-Afifi
Dr.	Khalid Abdel-Fattah El-Dougdoug Prof. of Agric. Virology, Fac. of Agric., Ain Shams University
Dr.	Badawi Abd El-Salam Othman Prof. Emeritus of Agric. Virology, Fac. of Agric., Ain Shams University

Date of Examination: 10 / 11 / 2013

EMPLOYMENT OF SOME BACTERIAL VIRUSES FOR IMPROVEMENT OF QUALITY AND SAFETY OF SOME FOOD PRODUCTS

ABEER ABD EL-WAHAB FEISAL GAD EL-HAK

B.Sc. Agric. Sc. (Food Science), Cairo University, 2002 M.Sc. Agric. Sc. (Agricultural Viruses), Ain Shams Univ., 2008

Under the Supervision of:

Dr. Badawi Abd El-Salam Othman

Prof. Emeritus of Agricultural Virology, Agric. Microbiol. Dept., Fac. of Agriculture, Ain Shams University (Principle Supervisor).

Dr. Khalid Abdel-Fattah El-Dougdoug

Prof. of Agricultural Virology, Agric. Microbiol. Dept., Fac. of Agriculture, Ain Shams University.

Dr. Hafez Saied-Ahmed Shalaby

Prof. Emeritus of Biotechnology, High Institute for Agric. Co-Operation.

ABSTRACT

Abeer Abd El-Wahab Feisal Gad El-Hak: Employment of Some Bacterial Viruses for Improvement of Quality and Safety of Some Food Products. Unpublished Ph.D. Thesis, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, 2013.

Samples of sewage water were assayed qualitatively by the spot test for the presence of phages specific for Salmonella typhimurium. The Salmonella bacteriophage was isolated by the single plaque isolation technique; propagated by the liquid enrichment method and purified by the two phase separation system using polyethylene glycol 6,000 and dextran sulfate 500. The morphology of purified particles of the isolated Salmonella bacteriophage was determined and it was curled long non contractile tail type with 243.5 nm in length and 17.4 nm in width and the head is isometric in shape with diameter of about 69.6 nm. The phage isolate infected two bacterial strains out of 8 bacterial isolates belonging to family Enterobacteriaceae including Salmonella typhimrium ATCC25566 and S.typhimurium MM11.The isolated Salmonella phage has ds DNA size of 18 kbp. Thermal inactivation point of the isolated phage was found to be 78 °C for 10 min. Phage survived for 7 days at 4, 25, 37, 42 and -20 °C., the virus lost ability its to lyses salmonella cells at pH 4, 5, 6, 10, 11 and 12. The virus lost its activity after 50 min exposure to UV at distance of 53 and 70 cm UV source. The preservation of Salmonella bacteriophage particles with different concentrations of sodium chloride (NaCl), sodium benzoate, potassium sorbate and citric acid 24 hr resulted in inhibiting viral infectivity completely above 0.05, 0.1, 0.5 and 1.0 % for sodium benzoate, potassium sorbate and citric acid, respectively. The effect of sodium hypochlorite and SDS on Salmonella bacteriophage suspension was studied. The virus infectivity was completely inhibited at concentration of 5 % for both detergents.

In this study, numbers of experiments have been performed to evaluate the potential of the isolated phage for the reduction of *S. typhimurium* contamination in fresh green salads, apple, some meat products and fresh chicken cuts.

Data revealed that, the virulent *Salmonella* phage reduced the total counts of *S. typhimurium* in fresh green salads through 24hr from incubation at 4°C at rate of 3.26 \log_{10} units. The virulent phage reduced the total viable number of *Salmonella* cells in the green apple, red apple and apple slices at rat of 2.36 \log_{10} , 3.07 \log_{10} and 3.1 \log_{10} respectively after incubation for 7 days . at room temperature (22-25°C). Application of virulent *Salmonella* phage to manufactured chicken Berger caused a reduction of indigenous *Salmonella* density after 15 days from the incubation at 4°C at rate of 2.26 \log_{10} cfu/g, and with rate of 3.39 \log_{10} cfu/g in case of treatment the manufactured chicken Berger with both phage and *Salmonella*.

Treatment of the fresh chicken cuts with mixture of *Salmonella* and its phage by flipping, spraying and soaking followed by incubation for 7 days at 4°C caused reduction of *Salmonella* cells with rate of 2.75 log₁₀, 2.84 log₁₀ and 2.11 log₁₀ respectively.

Keywords: *Salmonella typhimurium*, bacteriophage, physical properties, biology, morphology, stability, restriction enzymes, phage therapy, food preservation, phage application.

ACKNOWLEDGMENT

Praise and thanks be to ALLAH, the most merciful for assisting and directing me to the right way

I would like to express my deepest gratitude and special respect to **Prof. Dr. Badawi Abd El-Salam Othman**, Emeritus of Professor Agric. Virology.Agric. Microbial. Dept. Fac. of Agric. Ain Shams Univ., for his sincere, kind supervision and his important accurate notices from the beginning to the end of this work.

Thanks to **Prof. Dr. Khalid Abd El-Fattah El-Dougdoug**, Professor and Head of Agric. Microbial. Dept. Fac. of Agric. Ain Shams Univ., for his helpful supervision, valuable guidance, valuable help and encouragement during his supervision.

It is pleasure to acknowledge **Prof. Dr. Hafez Saied-Ahmed Shalaby**, Professor of Biotechnology, Higher Institute for Agricultural Co-operation, for his useful helps, encouragement, continuous guidance and unlimited help.

Thanks are due to **Dr. Mohamed M. Abd El-Razek**, Assistant Prof. of Food Microbiology, Food Science Dept., Fac. of Agric. Ain Shams Univ. for his useful help and continuous guidance during the priod of this study.

Many kindly helps I received during the study, especially from **Dr. Hoda M. Waziri**, Researcher, Virus and Phytoplasma Research Dept., Plant Pathology Research Institute, Agriculture Research Center, in purification procedures, **Dr. Ahmed A. Askora**, Lecturer of Virology, Botany Dept., Fac. of Sc., Zagazig Univ., for his helping in molecular virology studies.

I would like to express my great appreciation to all staff members of the Department of Agric. Microbiol., Fac. of Agric., Ain Shams Univ. for their help and cooperation during the investigation.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	VII
LIST OF ABBREVIATIONS	X
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	5
III. MATERIALS AND METHODS	31
1- Source of Salmonella bacteriophage	31
2- Source of Bacterial hosts	31
3- Microbiological analyses of the samples	31
3.1- Determination of the total viable bacterial counts (TVBCs)	32
3.2- Determination of the coliform group	32
3.2.1- Determination of the total coliform (TC) count	32
3.2.2- Determination of the fecal coliform count	33
3.2.3- Determination of the fecal <i>Streptococi</i> (FS) count	33
3.3- Detection of <i>Salmonella</i> spp.	33
3.4- Detection of <i>Staphylococcus aureus</i>	33
4-Isolation, propagation and purification of Salmonella bacteriophage	
from sewage water	34
4.1- Preparation of crude <i>Salmonella</i> phage suspension	34
4.2- Detection of <i>Salmonella</i> bacteriophages	34
4.2.1- Qualitatively	34
4.2.2- Quantitatively	35
4.2.3- Preparation of high titer <i>Salmonella</i> bacteriophage stock (single	
plaque)	35
4.3- Purification and concentration of <i>Salmonella</i> bacteriophage stock	36
5- Properties of Salmonella bacteriophage	37
5.1- Physical properties of Salmonella bacteriophage virions	37
5.1.1- Thermal stability	37
5.1.2- Stability of Salmonella bacteriophage for different temperatures	38
5.1.3- pH stability of <i>Salmonella</i> bacteriophage	38

	Page
5.1.4- Stability of <i>Salmonella</i> bacteriophage to UV radiation	38
5.2- Effect of some preservative agents on Salmonella	
bacteriophage infectivity	38
5.2.1- Effect of sodium chloride concentration	38
5.2.2- Effect of sodium benzoate concentration	39
5.2.3- Effect of potassium sorbate	39
5.2.4- Effect of citric acid	39
5.2.5- Effect of spices mixture	39
5.3- Effect of detergent on Salmonella bacteriophage	40
5.3.1- Effect of sodium hypochlorite	40
5.3.2- Effect of sodium dodecyl sulfate (SDS)	40
5.4- Phage properties	40
5.4.1- Biological properties	40
5.4.1.1- Host specificity	40
5 .4.1.2- Morphology of <i>Salmonella</i> particles	40
5.4.2-Capsid protein properties	41
5.4.2.1- Determination of protein quantity	41
5.4.3- Isolation of <i>Salmonella</i> bacteriophage DNA	42
5.4.3.1- Extraction <i>Salmonella</i> phage DNA (T-DNA)	42
5.4.3.2- Agarose gel electrophoresis of bacteriophage DNA	43
5.4.4-Antigenic properties	44
5.4.4.1- Rabbit immunization	44
5.4.4.2- Blood collection and separation of antiserum	44
5.4.4.3- Specificity of the produced antiserum	44
6. Controlling food borne Salmonella pathogen via application of	
lytic bacteriophage	45
6.1- Green salad	45
6.2- Fruits	45
6.3- Manufacture of Chicken Berger	46
6.4- Chicken cuts	47

7- Statistical analysis	47
8- Media and solutions used in this study	48
8.1- Nutrient Agar and Broth media	48
8.2- M-Endo Agar LES medium	48
8.3- M-FC Agar medium	49
8.4- M-Enterococces ager medium	49
8.5- Violet Red Bile Agar medium	50
8.6- Buffered Peptone Water	50
8.7- Tetera thionate broth medium	51
8.8- Xylose Lysine Desoxy cholate Agare	51
8.9- Bismuth sulphate agar medium	52
8.10- Barid Parker agar medium	52
8.11- Palcam <i>Listeria</i> agar medium	53
8.12- SM buffer	54
IV. RESULTS	55
V. DISCUSSION	132
VI. SUMMARY	144
VII. REFERENCE	152
ARABIC SUMMARY	1
	İ
	İ
	İ
	İ
	İ
	1
	İ
	i

LIST OF TABLES

Table No.	Page
1. Effect of temperature on <i>Salmonella</i> bacteriophage infectivity	59
2. Determination of thermal inactivation point of Salmonella	
bacteriophage	60
3. Determination the stability of Salmonella bacteriophage particles, at	
different temperature degrees for 7 days by spot test	61
4. Stability of Salmonella phage to different pH levels	62
5. Stability of Salmonella phage to UV radiation at different distance	
from the UV source, as revealed by spot test	63
6. Effect of different sodium chloride concentrations on Salmonella	
bacteriophage infectivity	64
7. Effect of different sodium benzoate concentrations on titer	
Salmonella bacteriophage infectivity	65
8. Effect of different potassium sorbate concentrations on titer	
Salmonella bacteriophage	66
9. Effect of different citric acid concentrations on titer Salmonella	
bacteriophage	67
10. Effect of different spices mixture concentrations on infectivity of	
Salmonella bacteriophage by spot test	69
11. Effect of different sodium hypochlorite concentrations on titer of	
Salmonella bacteriophage	70
12. Effect of different sodium dodecyl sulfate concentrations on titer of	
Salmonella bacteriophage	71
13. Host specificity of the isolated <i>Salmonella</i> bacteriophage	73
14.Determination of total coliform, total Salmonella, total	
Staphylococcus and total Listeria in different samples of green	
salads	78
15. Detection of bacteriophages in some green salad product samples	
obtained from different sources by spot test	79

16. Determination of total <i>Salmonella</i> and its phage in green salad after	
24 hrs at room temperature and refrigerator (4 °C)	81
17. Determination of total <i>Salmonella</i> and its phage in complete apples	
fruits (green and red delicious apples) at room temperature for 7	
days	84
18. Determination of total count of Salmonella and its specific phage in	
the slices of apples kept at 4 °C for 7 days	86
19. Densities of different bacteria (cfu/g) in some meat product	
samples obtained from different sources	88
20. Detection of bacteriophages in some meat product samples obtained	
from different sources by spot test	90
21. Determination of the total viable counts in the untreated chicken	
Berger (control)	92
22. Determination of total count of <i>Salmonlela</i> in the untreated chicken	
Berger	93
23. Determination of total viable counts in the chicken Berger treated	
with Salmonella phage only	94
24. Determination of total count of Salmonella in the chicken Berger	
treated with Salmonella phage	95
25. Determination of Salmonella phage prticles in the chicken Berger	
treated with Salmonella phage	97
26- Determination of total viable counts in the chicken Berger treated	
with mixture of Salmonella and its specific phages	98
27. Determination of total count of Salmonella in the chicken Berger	
treated with mixture of Salmonella and its specific phages	100
28. Determination of <i>Salmonella</i> phage particles in the chicken Berger	
treated with both Salmonella and its specific phage	101
29. Determination of total viable counts in the chicken Berger treated	
with Salmonella	103
30. Determination of total count of Salmonella in the chicken Berger	
treated with Salmonella	104

31. Determination of total viable count in different chicken Berger	
treatments	
32. Determination of total numbers of Salmonella in different chicke	n
Berger treatments	
33. Determination of total numbers of Salmonella in different chicke	en
cuts treated by flipping on foam plate at 4°C	
34. Determination of total numbers of Salmonella phage in different	
chicken cuts treated by flipping on foam plate at 4°C	
35. Determination of total numbers of Salmonella in different chicke	en
cuts treated by flipping on foam plate at 10 °C	
36. Determination of total numbers of Salmonella phage in different	
chicken cuts treated by flipping on foam plate at 10 °C	
37. Total numbers of Salmonella in different chicken cuts treated by	
spraying at 4 °C	
38. Determination of total numbers of Salmonella phage in different	
chicken cuts treated by spraying at 4 °C	
39. Determination of total numbers of Salmonella in different chicke	en
cuts treated by spraying at 10 °C	
40. Determination of total numbers of Salmonella phage in different	
chicken cuts treated spraying at 10 °C	
41. Determination of total numbers of Salmonella in different chicke	en
cuts treated by soaking at 4 °C	
42. Determination of total numbers of Salmonella phage in different	
chicken cuts treated by soaking at 4 °C	
43. Determination of total numbers of Salmonella in different chicke	n
cuts treated by soaking at 10 °C	
44. Determination of total numbers of Salmonella phage in different	
chicken cuts treated by soaking at 10°C	

LIST OF FIGURES

Fig. No.	Page
1. Standard curve of the protein concentration using bovine serum albumin as a standard protein	42
2. A) Spot test showing the bacterial lysis caused by virulent bacteriophage specific for <i>S. typhimurum</i> and (B) Single plaques of <i>S. typhimurum</i> phage showing identical morphological	56
3. Purification of <i>S. typhimurium</i> phage by the two phase separation system with dextran sulfate-polyethylene glycol two phase system. (A) Turbid precipitate in separating funnel containing the phage particles, (B) Intermediate phase (cake)	
containing the phage particles	58
4. Thermal inactivation point of <i>Salmonella</i> bacteriophage5. Effect of some preservative agents on <i>S. typhimurium</i>	60
bacteriophage activity	_
6. Effect of some detergents (sodium hypochlorite, A and SDS, B)	68
on S. typhimurium bacteriophage activity	72
7. Electron micrograph of purified <i>Salmonella</i> bacteriophage negatively stained with 2% uranyl acetate (Magnification =	72
80000 X)	74
8. Agarose gel electrophoresis of <i>S. typhimurium</i> phage DNA9. Serological detection and relation of <i>Salmonella typhimrium</i>	75
phage by immunodiffusion test	76
10. Determination of total count of <i>Salmonella</i> and its phage in	
green salad after 24 hrs at room temperature and refrigerator	82
11. Determination of total count of <i>Salmonella</i> and its phage in apple	
green and red apples kept at room temperature for 7 days	85
12. Determination of total count of <i>Salmonella</i> and its specific	
phage in the slices apples at 4 °C for 7 days	86

VIII

	Page
13. Determination of the total viable counts in the untreated	
chicken Berger (control)	92
14. Determination of total count of Salmonella in the untreated	
chicken Berger (control)	93
15. Determination of total viable counts in the chicken Berger	
treated with Salmonella phage only	95
16. Determination of total count of <i>Salmonella</i> in the chicken	
Berger treated with Salmonella phage	96
17. Determination of <i>Salmonella</i> phage particles in the chicken	
Berger treated with Salmonella phage	97
18. Determination of total count of <i>Salmonella</i> in the chicken	
Berger treated with mixture of Salmonella and its specific	
phages	99
19. Determination of total count of <i>Salmonella</i> in the chicken	
Berger treated with mixture of Salmonella and its specific	
phages	100
20. Determination of Salmonella phage particles in the chicken	
Berger treated with both Salmonella and its specific phage	101
21. Determination of total viable counts in the chicken Berger	
treated with Salmonella	103
22. Determination of total numbers of Salmonella in the chicken	
Berger treated with Salmonella	104
23. Determination of total count in different chicken Berger	
treatments	107
24. Determination of total numbers of Salmonella in different	
chicken Berger treatments	109
25. Total numbers of Salmonella in different chicken cuts treated	
by flipping on foam plate at 4°C	113
26. Total numbers of Salmonella phage in different chicken cuts	
treated by flipping on foam plate at 4°C	114

27. Total numbers of <i>Salmonella</i> in different chicken cuts treated	
by flipping on foam plate at 10 °C	116
28. Total numbers of salmonella phage in different chicken cuts	
treated by flipping on foam plate at 10 °C	117
29. Total numbers of Salmonella in different chicken cuts treated	
by spraying at 4 °C	120
30. Total numbers of Salmonella phage in different chicken cuts	
treated by spraying at 4 °C	121
31. Total numbers of Salmonella in different chicken cuts treated	
by spraying at 10 °C	123
32. Total numbers of Salmonella phage in different chicken cuts	
treated spraying at 10 °C	124
33. Determination of total numbers of Salmonella in different	
chicken cut treatments by soaking at 4 °C	127
34. Total numbers of Salmonella phage in different chicken cuts	
treated by soaking at 4 °C	128
35. Total numbers of Salmonella in different chicken cuts treated	
by soaking at 10 °C	130
36. Total numbers of Salmonella phage in different chicken cuts	
treated by soaking at 10°C	131