HYPOGLYCEMIC AND HYPOLIPIDEMIC ACTIVITY OF BIOMASS AND AQUEOUS EXTRACT OF BLUE GREEN ALGA SPIRULINA IN DIABETIC RATS

By

SALWA MAHMOUD EL-SAYED SEDEEK

B.Sc. Agric. Sc. (Agric. Biochemistry), Ain Shams University, 2006 M.Sc. Agric. Sc. (Agric. Biochemistry), Ain Shams University, 2012

A Thesis Submitted in Partial Fulfillment
Of
the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Sciences (Agricultural Biochemistry)

Department of Agricultural Biochemistry
Faculty of Agriculture
Ain Shams University

Approval Sheet

HYPOGLYCEMIC AND HYPOLIPIDEMIC ACTIVITY OF BIOMASS AND AQUEOUS EXTRACT OF BLUE GREEN ALGA SPIRULINA IN DIABETIC RATS

By

SALWA MAHMOUD EL-SAYED SEDEEK

B.Sc. Agric. Sc. (Agric. Biochemistry), Ain Shams University, 2006 M.Sc. Agric. Sc. (Agric. Biochemistry), Ain Shams University, 2012

This	This thesis for Ph.D. degree has been approved by:		
Dr. R	Radwan Sedky Farag		
P	Prof. Emeritus of Biochemistry, Faculty of Ag	griculture, Cairo	
Į	University.		
Dr. H	Hemmat Abdel Fattah Ibrahim		
A	Associate Prof. of Biochemistry, Faculty of	Agriculture, Ain Shams	
Į	University.		
Dr. R	Refat El-Sayed El-Ghobashy		
F	Prof. Emeritus of Biochemistry, Faculty of	Agriculture, Ain Shams	
J	University.		
Dr. A	Abd El-Monaem Mohamed El-Assar		
P	Prof. Emeritus of Biochemistry, Faculty of Ag	griculture, Ain Shams	
J	University.		

Date of Examination: 27/2/2018

HYPOGLYCEMIC AND HYPOLIPIDEMIC ACTIVITY OF BIOMASS AND AQUEOUS EXTRACT OF BLUE GREEN ALGA SPIRULINA IN DIABETIC RATS

By

SALWA MAHMOUD EL-SAYED SEDEEK

B.Sc. Agric. Sc. (Agric. Biochemistry), Ain Shams University, 2006 M.Sc. Agric. Sc. (Agric. Biochemistry), Ain Shams University, 2012

Under the supervision of:

Dr. Abd El-Monaem Mohamed El-Assar

Prof. Emeritus of Biochemistry, Department of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Refat El-Sayed El-Ghobashy

Prof. Emeritus of Biochemistry, Department of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University.

Dr. Mohamed Salah Hikal

Lecturer of Biochemistry, Department of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Salwa Mahmoud El-Sayed Sedeek: Hypoglycemic and Hypolipidemic Activity of Biomass and Aqueous Extract of Blue Green Alga *Spirulina* in Diabetic Rats. Unpublished Ph. D. Thesis, Department of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University, 2018.

This study aimed to evaluate hypoglycemic and hypolipidemic activities of Spirulina platensis (SP), its ethanolic (SPE) and aqueous (SPA) and bioactive components (phycocyanin phycocyanopeptide (PCP) and phycocyanobilin (PCB)), which isolated from alga on male STZ-induced diabetic rats. For this reason, male albino rats were equally divided randomely into nine groups designated as normal control, diabetic control, diabetic + glibenclamide drug (600 ug/kg body weight), which used as a common hypoglycemic drug for type 2 diabetes (T2DM) (Drug reference control), diabetic + Spirulina platensis biomass suspension (50 mg/ml/kg body weight), diabetic + ethanolic extract (50 mg/kg body weight), diabetic + water extract (50 mg/kg body weight), diabetic + phycocyanin (50 mg/kg body weight), diabetic + phycocyanopeptide (49 mg/kg body weight) and diabetic + phycocyanobilin (982 µg/kg body weight). The results show a statistically significant reduction (P \leq 0.05) level of fasting serum glucose, α -amylase activity, insulin resistance, lipids levels, liver and kidney functions and oxitative marker (malondialdehyde) in diabetic rats treated with Spirulina platensis, its extracts (SPE and SPA), PC, PCP and PCB compared with diabetic control. There was a marked decrease in these parameters in diabetic rats treated with ethenolic extract of Spirulina platensis, phycocyanin, phycocyanopeptide and phycocyanobilin compared with diabetic rats treated with glibenclamide drug. Also, there were an increase in HDL –cholesterol levels and β-cells function in these treatments compared with diabetic control. Histopathologically, diabetic rats treated with Spirulina, ethanolic extract, PC and PCP induced a slight improve of pancreatic islets and an obvious recovery of pancreatic cells. The

expression of insulin secretion from cells (β-cells) of diabetic rats was improved in the groups treated with spirulina, ethanolic extract, phycocyanin, phycocyanopeptide compared with glibenclamide drug. While, diabetic rats treated with phycocyanobilin recorded insulin levels lower than them. From this study it can be concluded that Spirulina platensis, ethanolic extract, phycocyanin, phycocyanopeptide phycocyanobilin possessed hypoglycemic, insulin sensitivity and hypolipidemic effects. The antidiabetic effect of ethanolic extract attribute to the presence of phenolic compounds which has antioxidant activity. In addition, the antidiabetic effect of PC is most likely due to its ability to reduce of insulin resistance, enhance β -cell function and recovery β -cells. This effect of PC is attributed to selenium-binding phycocyanopeptide responsible for the antioxidant activity and chromium-binding phycocyanopeptide which activates of insulin receptors.

Key words: *Spirulina platensis*, Phycocyanin, Phycocyanobilin, Diabetes Mellitus, Hypoglycemic, Hypolipidemic, Insulin Resistance.

ACKNOWLEDGMENT

First of all, great thanks and praises to **ALLAH** who gave me strength and patience to accomplish this work. Really, no word can express how grateful I am to **ALLAH**.

I am deeply grateful to my supervisors for their support and guidance during these years. I would like to express my deepest gratitude to **Dr. Abd El-Monaem Mohamed El-Assar** Prof. Emeritus of Biochemistry, Faculty of Agriculture, Ain Shams University for supervision, valuable advice, kind help in many practical problems, constructive suggestions and continuous encouragement, words are not enough to express how grateful I am to his for his dedicated guidance, assistance in preparation and revision of the manuscript, and encouragement throughout this study.

I would like to express my sincere appreciation to **Prof. Dr. Refat El-Sayed El-Ghobashy** Prof. Emeritus of Biochemistry, Faculty of Agriculture, Ain Shams University, for valuable guidance during the course of the work. Also, I wish to express my deepest gratitude to **Dr. Mohammed Salah Hikal** Assistant Prof. of Biochemistry, Faculty of Agriculture, Ain Shams University for his supervision, valuable advice, encouragement and guidance in this study.

I am grateful to **Prof. Dr. Abo El- Khair B. El-Sayed** Prof.at Unit Algae Technology, National Research Centre for his supervision, valuable advice, and to help me in the preparation of *Spirulina platensis* strain and the practical part.

Great thanks to my friends and all the people who have participated in some way in this work. I would like also to express my deep thanks to all the staff members of Agricultural Biochemistry Department, Faculty of Agriculture, Ain Shams University for their

generosity with me, encouragement and help during the preparation of this work.

Lastly but not least, words are not enough to express how I am grateful to my parents who pushed me to accomplish success in my life. I want to express my sincere appreciation and heartily thanks to my husband and my family for their continuous patience, support, great help and encouragement throughout this work.

CONTENTS

	Page
LIST OF TABLES	VI
LIST OF FIGURES	VIII
LIST OF ABBRIVIATION	XII
INTRODUCTION	1
REVIEW OF LITERATURE	4
2.1. Diabetes mellitus	4
2.1.1. Definition of diabetes mellitus.	4
2.1.2. Glucose metabolism	5
2.1.3. Beta-cell control of insulin secretion	5
2.1.4. Classification of Diabetes mellitus	6
2.1.5. Diagnosis and complication of diabetes	9
2.1.6. Metabolic correlation between nutrition and diabetes	10
2.1.7. Glycemic control	12
2.1.8. Relationship between type 2 diabetes mellitus and insulin resistance.	12
2.1.9. Classification of antihyperglycemic drugs	15
2.1.10. Oxidative stress.	17
2.1.10.1. Oxidative stress in type 2 diabetes mellitus (T2DM)	18
2.1.10.2. Effect of antioxidants in oxidative stress and T2DM	24
2.2. Spirulina.	27
2.2.1. Classification of <i>Spirulina</i>	27
2.2.2. Composition and nutritive value of <i>Spirulina</i>	28

2.2.3. Phycocyanin.	33
2.2.4. Bioactive compounds and medicinal properties of <i>Spirulina</i>	38
MATERIALS AND METHODS	41
3.1. Materials.	41
3.1.1. Microalga (Spirulina platensis)	41
3.1.2. Animals	41
3.1.3. Chemicals and solvents	41
3.1.4. Reagent methodology kits	41
3.2. Methods	42
3.2.1. Drying of fresh biomass of Spirulina platensis	42
3.2.2. Preparation of ethanolic and aqueous extracts of <i>Spirulina</i> alga	42
3.2.2.1. Aqueous extract	42
3.2.2.2. Ethanolic extract	42
3.2.3. Chemical constituents analysis of spirulina alga, its water and ethanolic extracts	42
3.2.3.1. Determination of alga pigments	42
3.2.3.2. Determination of total phenols content	43
3.2.3.3. Determination of total flavonoids	44
3.2.3.4. Identification and quantification of phenolic compounds of <i>Spirulina platensis</i> alga and its two different extract by HPLC	44
3.2.3.5. Determination of moisture content	45
3.2.3.6. Determination of total carbohydrates	45
3.2.3.7. Determination of free amino acids	45
3.2.3.8. Determination of total soluble proteins	46
3.2.4. Isolation and purification of phycocyanin from <i>Spirulina</i> alga.	47

3.2.4.1. Extraction of phycocyanin	47
3.2.4.1.1. Water extraction	47
3.2.4.1.2. Homogenisation of cells in a mortar and pestle	47
3.2.4.1.3. Freezing and thawing	47
3.2.4.1.4. Sonication.	47
3.2.4.2. Purification of phycocyanin	48
3.2.4.2.1. Ammonium sulfate precipitation	48
3.2.4.2.2. Dialysis	48
3.2.4.2.3. Gel filtration chromatography	48
3.2.4.3. Detection of purity of C-Phycocyanin by SDS-PAGE	49
3.2.5.Cleavage of thioether bond between phycocyanobilin and phycocyanopeptide in phycocyanin and detection of any change in the nature of phycocyanin	49
3.2.6. Determination of chromium and selenium contents in <i>Spirulina</i>	
platensis alga, phycocyanin, phycocyanopeptide and phycocyanobilin	50
platensis alga, phycocyanin, phycocyanopeptide and	50 51
platensis alga, phycocyanin, phycocyanopeptide and phycocyanobilin	
platensis alga, phycocyanin, phycocyanopeptide and phycocyanobilin	51
platensis alga, phycocyanin, phycocyanopeptide and phycocyanobilin	51 51
platensis alga, phycocyanin, phycocyanopeptide and phycocyanobilin	515151
platensis alga, phycocyanin, phycocyanopeptide and phycocyanobilin	51515152
platensis alga, phycocyanin, phycocyanopeptide and phycocyanobilin	5151515252
platensis alga, phycocyanin, phycocyanopeptide and phycocyanobilin	515151525254
platensis alga, phycocyanin, phycocyanopeptide and phycocyanobilin	51515152525454

3.2.2.4.5. Determination of serum total cholesterol	58
3.2.2. 4.6. Determination of high density lipoprotein- cholesterol	59
3.2.2.4.7. Low density lipoprotein- cholesterol (LDL)	59
3.2.2.4.8. Determination of serum triglycerides	59
3.2.2.4.9. Determination of serum aminotransferase (AST and ALT) activities	60
3.2.2.4.10. Determination of serum total protein	61
3.2.2.4.11. Determination of serum urea	62
3.2.2.4.12. Determination of serum creatinine.	63
3.2.2.4.13. Determination of Lipid peroxidation (oxidative stress marker	64
3.2.2.5. Histopathological investigations	65
3.2.3. Statistical analysis	65
RESULTS AND DISCUSSION	66
4.1.Phycocyanin content in <i>Spirulina platensis</i> dried different methods	66
4.2. Chemical major composition of <i>Spirulina platensis</i> alga and its water and ethanolic extracts.	68
4.3.Identification and quantification of phenolic compounds of <i>Spirulina platensis</i> alga and its water and ethanolic extracts of the alga by HPLC	72
4.4.Antioxidant activity of <i>Spirulina platensis</i> , its water and ethanolic extracts by DPPH free radical scavenging assay	78
4.5.Isolation and purification of phycocyanin from Spirulina platensis	80
4.5.1. Extraction and quantification of phycocyanin	80
4.5.2. Purification of phycocyanin extracted from <i>Spirulina platensis</i> .	82

phycocyanobilin	l 85
4.7. Antioxidant activity of phycocyanin and its bioactive components (phycocyanopeptide and phycocyanobilin) by DPPH assay	
4.8.Chromium and selenium levels in <i>Spirulina platensis</i> phycocyanin, phycocyanopeptide and phycocyanobilin	
4.9. Biochemical analysis.	91
4.9.1. Fasting serum glucose, insulin and α-amylase	91
4.9.1.1. Fasting serum glucose	91
4.9.1.2. Fasting serum insulin	96
4.9.1.3. α- amylase activity	99
4.9.2. β-cell function (HOMA-β score) and insulin resistance (HOMA-IR score)	101
4.9.3. Lipid profile levels (total-cholesterol, triglycerides, HDL-cholesterol and LDL-cholesterol)	105
4.9.4. Kidney functions (serum urea and creatinine levels)	108
4.9.5. Liver functions (alanine aminotransferase and aspartate aminotransferase activities)	111
4.9.6. Serum total protein	117
4.9.7. Oxidative cell biomarker (lipid peroxidation)	116
4.10. Histopathological results.	119
SUMMARY AND CONCLUSION	126
REFERENCES	133

LIST OF TABLES

No.		Page
1.	Drugs available for type 2 diabetes mellitus	16
2.	Amino acids profile in the biomass of Spirulina platensis	32
3.	Mineral content in the biomass per 100 grams for Spirulina	32
4.	Vitamins content in the biomass per 100 grams for Spirulina	34
5.	Phycocyanin content in <i>Spirulina</i> dried by different methods	67
6.	Chemical major composition of Spirulina platensis alga	68
7.	Major chemical components of <i>Spirulina platensis</i> alga and its water and ethanolic extracts	70
8.	Types and the content of phenols (mg/100g) identified by HPLC analysis of <i>Spirulina platensis</i> alga and its aqueous and ethanolic extracts	73
9.	Quantity of flavonoids (mg/100g) identified by HPLC analysis of <i>Spirulina platensis</i> alga and its aqueous and alcoholic extracts.	74
10.	DPPH free radical scavenging activity of aqueous and ethanolic extracts of <i>Spirulina platensis</i> compared with vitamin C	79
11.	Extraction of phycocyanin from <i>Spirulina</i> dried by spray method using different methods	81
12.	Purification of phycocyanin (PC) extracted from <i>Spirulina</i> platensis by ultarsonication	83
13.	Effect of cleavage of thioester bond between phycocyanobilin and phycocyanopeptide on 620/280 and 620/370 ratios	85
14.	DPPH free radical scavenging activity of phycocyanin and its components (phycocyanopeptide and phycocyanobilin)	87
15.	Chromium and selenium Level in <i>Spirulina platensis</i> , phycocyanin, phycocyanopeptide and phycocyanobilin	89

16.	Effect of <i>Spirulina platensis</i> biomass, its ethanolic and aqueous extracts, phycocyanin, phycocyanopeptide and phycocyanobilin on fasting serum glucose, insulin and α -amylase in STZ-induced diabetic rats after 30 days treatments.	92
17.	Effect of <i>Spirulina platensis</i> biomass, its ethanolic and water extracts, phycocyanin, phycocyanopeptide and phycocyanobilin on insulin resistance and β - cell function in STZ induced-diabetic rats.	102
18.	Effect of <i>Spirulina platensis</i> biomass, its ethanolic and water extracts, phycocyanin, phycocyanopeptide and phycocyanobilin on lipid profile in STZ-induced diabetic rats	107
19.	Effect of <i>Spirulina platensis</i> biomass, its ethanolic and aqueous extracts, phycocyanin, phycocyanopeptide and phycocyanobilin on Kidney function (urea and creatinine) in STZ- induced diabetic rats after 30 days treatments	109
20.	Effect of <i>Spirulina platensis</i> , its ethanolic and aqueous extracts, phycocyanin, phycocyanopeptide and phycocyanobilin on liver function (ALT and AST) in STZ-induced diabetic rats.	112
21.	Effect of <i>Spirulina platensis</i> , its ethanolic and aqueous extracts, phycocyanin, phycocyanopeptide and phycocyanobilin on serum total protein level in STZ-induced diabetic rats.	115
22.	Effect of <i>Spirulina platensis</i> , its ethanolic and aqueous extracts, phycocyanin, phycocyanopeptide and phycocyanobilin on serum malondialdehyde (MDA) level in STZ-induced diabetic rats.	117

LIST OF FIGURES

No.		Page
1.	Structure of the pancreatic islet.	6
2.	Complication of diabetes mellitus	10
3.	Insulin action and control of glucose homeostasis	13
4.	Tissue pathophysiology of type 2 diabetes	14
5.	Mechanism of hyperglycemia and dyslipidemia for the development of IR and T2DM	15
 7. 	Schematic representation of the status of oxidative stress markers during diabetes. MDA:malondialdehyde, AOPP: Advanced oxidation protein products, PCO: protein carbonyls, GSH: reduced glutathione, and SOD: superoxide dismutase	20
8.	•	
0.	Chemical structure of phycocyanin	36
9.	The chemical structure of phycocyaninbilin chromophore (open- chain tetrapyrrol) (a) and bilirubin (b)	37
10.	Phycocyanin structure (a) and cleavage thioether bond between phycocyanobilin (b) and phycocyanobeptide (c) by HCl	50
11.	Factorial design for Experimental animals	53
12.	Direct sandwich ELISA for insulin determination	55
13.	Phycocyanin content in <i>Spirulina platensis</i> dried by different methods	67
14.	HPLC -UV chromatogram of phenolic compounds of Spirulina platensis alga	74
15.	HPLC -UV chromatogram of phenolic compounds of aqueous extract of <i>Spirulina platensis</i>	75