

Ain Shams University Faculty of Engineering

Department of Electronics and Communication Engineering

BEHAVIORAL MODELING AND VERIFICATION OF CHARGE PUMP DC-DC CONVERTERS

By

Eng.: Dalia Hany Mohamed El-Ebiary

B. Sc. Electronics and Communication Engineering 1999

A Thesis

Submitted in partial fulfillment of the requirement for the degree of

M. Sc. in Electronics Engineering

Supervised by:

Prof. Dr. Hassan Ahmed El-Ghitani Prof. Dr. Ismail Mohamed Hafez Dr. Mohamed A. Dessouky

Cairo, 2008

Name: Dalia Hany Mohamed El-Ebiary

Thesis: Behavioral Modeling and Verification of Charge Pump DC-DC Converters

Degree: Master of Science in Electronics Engineering

Referees committee

Title, Title and Affiliation

Signature

Date: / /2008

STATEMENT

This thesis "Behavioral Modeling and Verification of Charge

Pump DC-DC Converters" is submitted to Ain Shams

University for the degree of Master of Science in Electronics

Engineering.

The work included in this thesis was carried out by the author in

the Department of Communication and Electronics Engineering,

Faculty of Engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or a

qualification at any other University or Institution.

Name: Dalia Hany Mohamed El-Ebiary

Signature:

Date:

C.V.

Name of Researcher: Dalia Hany Mohamed El-Ebiary

Date of Birth: 15 December 1976

Place of Birth: Kuwait

First University Degree: B.Sc. in Electrical Engineering

Name of University: Ain Shams University

Date of Degree: June 1999

Acknowledgement

I would like to express my appreciation to my supervisors Prof. Dr. Hassan El-Ghitani and Dr. Mohamed A. Dessouky.

Special thanks are due to Eng. Maged Fikry from Mentor Graphics, for his encouragement and guidance throughout my research work and my career. He has been my mentor since I graduated and I am particularly grateful to the advice both technical and personal that he has given me over the years.

Thanks to Mentor Graphics Egypt for supporting this thesis and providing the machines and tools used in simulations.

Special thanks and gratitude to my father and mother, for emphasizing to me the importance of continuing my education and encouraging me to complete this degree.

Finally, my deepest gratitude and most sincere thanks are for my husband, Asser Essam. Without his understanding and support and encouragement this wouldn't have been possible.

ABSTRACT

Complex systems today are becoming more and more mixed-signal, with the analog part being the design and verification bottle neck. Traditionally, the virtual verification for the analog part of the design was only available through transistor-level SPICE simulation. Lately, behavioral modeling has been proved to be the right methodology to cope with today's design and verification demands.

Some behavioral models of complex systems consume a lot of time during simulation due to reasons such as high switching rates or many operating frequencies. An example of such circuits is the family of switched-capacitor DC-DC converters, also known as charge pumps.

Our target is to study the different behavioral modeling techniques which, when deployed, enable the speed up of the simulation time of such circuits, while preserving accuracy. In this thesis we will also present an average modeling technique that concentrates on the information bearing signal of low frequency, instead of the detailed transient higher frequency signal, thereby greatly relaxing the simulation time-step, and gaining the same information in a shorter time. A real-life design is used to verify the presented methodology.

Table of Contents

CHAP	TEF	R 1	1
INTRO	וומכ	CTION	1
1.1		otivation	
1.1		ontributions	
1.3		esis Outline	
1.3 1.4		blications	
		R 2	
Вена	VIO	RAL MODELING IN MIXED-SIGNAL DESIGN	6
2.1		roduction	
2.2		ndamental Concepts	
2.2	2.1	A/MS Systems	
2.2	2.2	SoC	
2.2	2.3	Functional Verification	
2.2	2.4	Modeling	
2.2	2.5	Behavioral Modeling	
2.2	2.6	HDLs	
2.3	Th	e Challenge of Mixed-Signal Design	13
2.4	Th	e Role of Behavioral Modeling in Top-Down Design	17
2.4	4.1	Step 1: System Level Simulation	20
2.4	4.2	Step 2: System Decomposition	20
2.4	4.3	Step 3: Block Specification	21
2.5	Th	e Role of Behavioral Modeling in Bottom-Up Verification	21
2.5	5.1	Step 1: Cell Implementation and Characterization	23
2.5	5.2	Step 2: Detailed Model Development	23
2.5	5.3	Step 3: Model Calibration	24
2.5	5.4	Step 4: Sub-System Verification	25
2.6	To	p-Down Design & Bottom-Up Verification	25
2.7	Pr	oblems Facing the Adoption of Behavioral Models	27
2.8		e need for a library of models	
2.9	Be	havioral Model Creation	29
2.10	Be	havioral Modeling Techniques	
2.1	10.1	'SPICE' Macro-Modeling	31
2.1	10.2	Equation-Based Modeling	33
2.1	10.3	Physically Inspired	
	10.4	Curve Fitted	
	10.5	Table Based Modeling	
	10.6	Empirical Modeling	
	10.7	Event Driven Modeling.	
2 11	R_{ρ}	havioral Model Validation	37

2.11.1	Unit Testing	
2.11.2	Characterization Benches	39
2.11.3	System Testing	
2.11.4	Regression Testing	40
CHAPTER	23	42
SWITCHE	D-CAPACITOR DC-DC VOLTAGE CONVERTERS	42
	roduction	
3.2 The	e Need for Switched-Capacitor DC-DC Converters	42
	vantages of Switched-Capacitor DC-DC Converters	
	ndamental Concepts	
3.4.1	Charge transfer using capacitors	
3.4.2	Charging a capacitor from a Voltage Source	
	itched-Capacitor Voltage Converter Architectures	
	o Phase Voltage Doubler (TPVD) Basic Principle of Operation	
	o Phase Voltage Inverter Basic Principle of Operation	
3.8 Tw	o Phase Push-Pull Basic Principle of Operation	57
CHAPTER	R 4	60
BEHAVIO	RAL MODELING OF	60
	D CAPACITOR DC-DC CONVERTERS	
	roduction	
	ansistor Models	
	tailed Behavioral Models	
4.3.1	Switch Implementation techniques	
4.3.1.		
4.3.1.		
4.3.1.		
4.3.1.		
4.3.1.		
4.3.1.	\mathcal{E}	
	arge Pump Model Implementation	
4.4.1	Voltage Doubler	
4.4.2	Voltage Inverter	
4.4.3	Push-Pull Voltage Doubler	
	erage Behavioral Models	
4.5.1	Voltage Doubler Average Model Analysis	87
4.5.2	Voltage Doubler Average Model	
4.5.3	Voltage Inverter Average Model Analysis	
	Voltage Inverter Average Model	
4.5.5	Push-Pull Voltage Doubler Average Model Analysis	
4.5.6	Push-Pull Voltage Doubler Average Model	
CHAPTER	2 5	103
EXPERIM	ENTAL RESULTS	103

5.1	Introduction	
5.2	Voltage Doubler	103
5.3	Voltage Inverter	
5.4	Push-Pull Voltage Doubler	107
5.5	Charge Pump Voltage Converter Circuit	
5.5		
5.5		115
5.5	5.3 Average Behavioral Description	117
5.5		
CHAP	ΓER 6	126
Conc	LUSION	126
6.1	Summary	
6.2	Conclusion	
6.3	Future Work	
APPE	NDIX A	130
REFE	RENCES	137

Table of Figures

FIGURE 2. 1 TOP-DOWN DESIGN PYRAMID	18
FIGURE 2. 2 TOP-DOWN DESIGN GAP	18
FIGURE 2. 3 EXAMPLE OF A TOP-LEVEL SYSTEM.	20
FIGURE 2. 4 EXAMPLE OF A SUB-SYSTEM	20
FIGURE 2. 5 EXAMPLE OF A SUB-SYSTEM	21
FIGURE 2. 6 MIXING LEVELS OF ABSTRACTION	23
FIGURE 2. 7 DETAILED BEHAVIORAL MODEL	24
FIGURE 2. 8 MODEL CALIBRATION	24
FIGURE 2. 9 TOP-DOWN DESIGN & BOTTOM-UP VERIFICATION FLOW	25
FIGURE 2. 10 DIFFERENT ABSTRACTION LEVELS	30
FIGURE 2. 11 DIFFERENT ABSTRACTION LEVELS	31
FIGURE 2. 12 MACROMODEL DESCRIPTION	32
FIGURE 2. 13 VCO TUNING CURVES	34
FIGURE 2.10.1 VCO TUNING CURVE TABLE BASED MODEL	35
FIGURE 2.10.2 MICROSTRIP EMPIRICAL MODELS	36
FIGURE 3. 1 IDEAL AND ACTUAL CAPACITOR MODEL	45
FIGURE 3. 2 CHARGING IDEAL AND ACTUAL CAPACITORS	46
FIGURE 3. 3 CHARGE SHARING CAPACITORS	47
FIGURE 3. 4 SIMPLE CHARGE PUMP CIRCUIT	48
FIGURE 3. 5 CONTINUOUSLY SWITCHING CHARGE PUMP	49
FIGURE 3. 6 COCKCROFT-WALTON MULTIPLYING CIRCUIT	50
FIGURE 3. 7 COCKCROFT-WALTON MULTIPLYING CIRCUIT USING DIODES	51
FIGURE 3. 8 DICKSON CHARGE PUMP WITH DIODE-CAPACITOR IMPLEMENTATION	51
FIGURE 3. 9 MOSFET IMPLEMENTATION OF DICKSON CHARGE PUMP	52
FIGURE 3. 10 MAKOWSKI CHARGE PUMP	53
FIGURE 3. 11 IDEAL CHARGE PUMP VOLTAGE DOUBLER	54
FIGURE 3. 12 NON-IDEAL CHARGE PUMP VOLTAGE DOUBLER	55
FIGURE 3. 13 NON-IDEAL CHARGE PUMP VOLTAGE DOUBLER	56
FIGURE 3. 14 PUSH-PULL CHARGE PUMP VOLTAGE DOUBLER	58
FIGURE 4. 1 TANH FUNCTION	68
FIGURE 4. 2 RESCALED TANH FUNCTION	68
FIGURE 4. 3 CUBIC SPLINE FUNCTION	71
FIGURE 4. 4 SCALED CUBIC SPLINE	71
FIGURE 4. 5 DIFFERENT SWITCH IMPLEMENTATIONS	74
FIGURE 4. 6 IDEAL VOLTAGE DOUBLER SIMULATION	77
FIGURE 4. 7 CHARGE PUMP VOLTAGE DOUBLER SIMULATION FOR DIFFERENT LOADS	78
FIGURE 4. 8 CHARGE PUMP VOLTAGE DOUBLER SIMULATION FOR DIFFERENT SWITCH C)N
RESISTANCES	79
FIGURE 4. 9 CHARGE PUMP VOLTAGE INVERTER SIMULATION FOR DIFFERENT LOADS	81
FIGURE 4. 10 CHARGE PUMP VOLTAGE INVERTER SIMULATION FOR DIFFERENT SWITCH	
ON RESISTANCES	82

FIGURE 4. 11 COMPARISON BETWEEN CONVENTIONAL VOLTAGE DOUBLER AND PUSH-
Pull Architectures
FIGURE 4. 12 NON-IDEAL CHARGE PUMP VOLTAGE DOUBLER
FIGURE 4. 13 CHARGE PUMP VOLTAGE DOUBLER: AVERAGE EQUIVALENT CIRCUIT 90
FIGURE 4. 14 NON-IDEAL CHARGE PUMP VOLTAGE INVERTER
FIGURE 4. 15 CHARGE PUMP VOLTAGE INVERTER: AVERAGE EQUIVALENT CIRCUIT 94
FIGURE 4. 16 PUSH-PULL VOLTAGE DOUBLER
FIGURE 4. 17 PUSH-PULL VOLTAGE DOUBLER: AVERAGE EQUIVALENT CIRCUIT
FIGURE 5. 1 RESULTS FOR VOLTAGE DOUBLER (CIRCUIT-LIKE) VERSES AVERAGE MODEL 104
FIGURE 5. 3 RESULTS FOR PUSH-PULL DOUBLER CONVENTIONAL VERSES AVERAGE MODEL
FIGURE 5. 4 SIMPLE DIAGRAM FOR ST MICROELECTRONICS CHARGE-PUMP CIRCUIT 110
FIGURE 5. 5 TEST CIRCUIT FOR THE CHARGE PUMP CIRCUIT AND MODELS
FIGURE 5. 6 PRACTICAL EXAMPLE: ST MICROELECTRONICS PROPRIETARY - PUBLICATION
OF THE SCHEMATICS AUTHORIZED FRANCESCO PULVIRENTI, DESIGN DIRECTOR OF
DISPLAY DIVISION – STMICROELECTRONICS (APRIL 2007)
FIGURE 5. 7 CHARGE PUMP AVERAGE EQUIVALENT CIRCUIT
FIGURE 5. 8 RESULTS FOR VOLTAGE CONVERTER CIRCUIT VERSES CIRCUIT-LIKE
BEHAVIORAL MODELS
FIGURE 5. 9 VOLTAGE CONVERTER CIRCUIT VS. CIRCUIT-LIKE BEHAVIORAL MODEL WITH
OVERLAPPING PHASES
FIGURE 5. 10 RESULTS FOR VOLTAGE CONVERTER CIRCUIT VERSES AVERAGE BEHAVIORAL
MODEL

Table of Tables

TABLE 5. 1 VOLTAGE DOUBLER: ACCURACY COMPARISON FOR DIFFERENT RLOAD	. 105
TABLE 5. 2 VOLTAGE DOUBLER: SIMULATION STATISTICS	. 105
TABLE 5. 3 VOLTAGE INVERTER: ACCURACY COMPARISON FOR DIFFERENT RLOAD	. 107
TABLE 5. 4 VOLTAGE INVERTER: SIMULATION STATISTICS	. 107
TABLE 5. 5 PUSH-PULL: ACCURACY COMPARISON FOR DIFFERENT RLOAD AND RON;	
fclk=20kHz	. 109
TABLE 5. 6 PUSH-PULL: ACCURACY COMPARISON FOR DIFFERENT RLOAD AND RON;	
FCLK=250KHz	. 109
TABLE 5. 7 PUSH-PULL: SIMULATION STATISTICS; FCLK=20KHZ	. 109
TABLE 5. 8 PUSH-PULL: SIMULATION STATISTICS; FCLK=250KHZ	. 110
TABLE 5. 9 TRANSISTOR-LEVEL ELEMENTS	. 113
TABLE 5. 10 CHARGE PUMP VOLTAGE CONVERTER CIRCUIT VS. CIRCUIT-LIKE MODEL:	
SIMULATION STATISTICS	. 122
TABLE 5. 11 CHARGE PUMP VOLTAGE CONVERTER CIRCUIT VS. AVERAGE MODEL:	
SIMULATION STATISTICS	. 124

Chapter 1 Introduction

CHAPTER 1 Introduction

1.1 Motivation

The growing competition among chip makers has made first time silicon success a key requirement. To achieve this, SoC designers are always in search for means to minimize risks and to verify their systems at less critical stages within their design cycle. Combining the complexity of digital verification with the increasing integration of more sophisticated analog circuits, the problem is getting exponentially worse. It is no longer wise to divide a design into analog and digital parts and make separate simulations for each. This is why mixed-signal simulation has become the solution adopted by many design houses to improve their verification methodologies. The complete system is simulated to verify the system functionality with respect to the target system specifications.

To succeed in simulating large and complex systems, some blocks need to be simplified using mixed-signal HDLs. An example of a typical sub-system that needs modeling is the Switched-capacitor or charge pump voltage converter circuit. This circuit is used in many applications that require multiple derived supply voltages, such as LCD drivers and many other portable applications. Its popularity stems from its low cost, small size and inductorless and fairly simple design. Complex systems such as LCD drivers are almost impossible to simulate at the system level due to their large size and complex functionality. The charge pump is one of the most active blocks in such systems, as it is