

Effect of Endometrial Injury before Frozen Embryo Transfer on Pregnancy Rate (Randomized Controlled Trial)

Thesis

Submitted for Partial Fulfillment of Master Degree in Obstetrics and Gynecology

By

Yasser Abdelrahman Abdelhameed Elsherbiny

M.B., B.CH. (2012) - Faculty of Medicine Ain Shams University Resident at Imbaba general Hospital- Giza

Under Supervision of

Ass. Prof. Adel Shafik Salah El-Din

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine- Ain Shams University

Dr. Mohammed Ahmed Faris

Lecturer in Obstetrics and Gynecology Faculty of Medicine- Ain Shams University

Dr. Mohamed Esmat Abbass Shawky

Lecturer in Obstetrics and Gynecology Faculty of Medicine- Ain Shams University

> Faculty of Medicine Lin Shams University

> > 2018

First, thanks are all due to Allah for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

My profound thanks and deep appreciation to **Prof.** Adel Shafik Salah El-Din Assistant Professor of Obstetrics and Gynaecology, Faculty of Medicine, Ain Shams University for his great support and advice, his valuable remarks that gave me the confidence and encouragement to fulfill this work.

I am deeply grateful to Dr. Mohammed Ahmed Faris, Tecturer of Obstetrics and Gynaecology, Faculty of Medicine, Ain Shams university for adding a lot to this work by his experience and dealing with the patients and performing the interventional procedure in this study.

I would like to direct my special thanks to **Dr. Mohamed Esmat Abbass Shawky** Lecturer of Obstetrics and Gynaecology,
Faculty of Medicine, Ain Shams University, for his invaluable help, fruitful advice, continuous support offered to me and guidance step by step from the beginning till this essay finished.

I cannot forget the great help of all **Doctors** in **ART Unit**, **Ain shams University** and **Dar el Teb Tertility Center** for their cooperation and their patience and support to get this work into light.

I am also very thankful for all **Patients** participated in this study for their trust and believing in the value of science and clinical researches and their role in improving medicine and its practice.

I am extremely sincere to My Family who stood beside me throughout this work giving me their support.

Words fail to express my love, respect and appreciation to My Wife for her unlimited help and support.

Yasser Abdelrahman Abdelhameed Elsherbiny

Contents

Subjects Page	
• List of Abbraviations	т
• List of Abbreviations	
List of Tables	
List of Figures	IV
 Protocol 	
• Introduction	1
Aim of the Work	4
• Review of Literature	
- Chapter I: Cryopreservation of human embryo	5
- Chapter II: Endometrial preparation before	frozen-
thawed embryo transfer	
- Chapter III: Endometrial Injury	
Subjects & Methods	51
• Results	69
• Discussion	76
• Summary	84
• Conclusion	87
Recommendations	88
• References	89
Arabic summary	

List of Abbreviations

APC: Antigen Presenting Cells

APOD: Apolipoprotein D

ART : Assisted reproductive technology

ART : Assisted reproductive technology

B- hcg: Beta Human chorionoc gonadotropin

BMI : Body mass index

CI : Confidence interval

CPA : Cryoprotective additives

DSMO: Dimethyl sulphoxide

EG: Ethylene glycol

EI : Endometrial injury

ET : Embryo transfer

FET : Frozen embryo transfer

FT: Frozen thawed

GnRH: Gonadotrophin-releasing hormone

Groa : Growth related oncogene a

hCG: Exogenous human chorionic gonadotrophin

ICM: Inner cell mass

IL15: Interleukin 15

ITGa6 : Integrin a 6

Iui: Intra uterine insemination

LH : Luteinizing hormone

Sqişt of Abbreviations &

LN: Liquid nitrogen

MIP1B: Macrophage inflammatory protein 1B

MUC1: Mucin 1 transmembrane

OPN: Osteopontin

PG : Propylene glycol

PLA2: Phospholipase A2

PN: Pro nuclear

r-Hcg : Recombinant Human chorionoc gonadotropin

TNFa: Tumor necrosis factor a

UPIb : Uroplakin Ib

USG: Ultrasonography

List of Tables

Table No.	Title	Page
1	Embryo grading by gardener grading system	56
2	Demographic characteristics among the studied groups	70
3	Embryo transfer characteristics among the studied groups	71
4	Chemical pregnancy among the studied groups	72
5	Clinical pregnancy among the studied groups	73
6	Multiple pregnancy among the studied groups	74
7	Implantation rate among the studied groups	75

List of Figures

Figure No.	Title	Page
1	Frozen embryos in Liquid Nitrogen	5
	Container.	
2	Clinical implications related to optimization of cryopreservation in IVF	6
3	Schema of cryopreservation procedure by HOV method	13
4	Characteristic sonographic endometrial	31
	changes seen throughout the menstrual cycle	
5	Estradiol Valerate in Progynova ® 2 mg	33
	tablet.	
6	Estrodiol valerate in Estraderm ® 100 mg	34
	in trans-dermal patch.	
7	Dendritic cells and macrophages create an	40
	inflammatory gradient	
8	Schematic representation of the	43
	mechanisms involved in endometrial injury	
9	Endometrial scratch to improve	46
	implantation rate.	
10	Modified Cook® IUI catheter	54
11	Evaluation of Thawed embryo	58
12	Frozen-thawed human embryos in which	59
	none	

🕏 List of Figures 🗷

Figure No.	Title	Page
13	Trans-vaginal ultrasound showing uterus	63
	with endometrial thickness.	
14	CONSORT, Patient flow chart.	69
15	Chemical pregnancy among the studied	72
	groups.	
16	Clinical pregnancy among the studied	73
	groups.	
17	Multiple pregnancy among the studied	74
	groups.	
18	Implantation rate among the studied groups	75

Effect of Endometrial Injury before Frozen Embryo Transfer on Pregnancy Rate (Randomized Control Trial)

Protocol of Thesis

Submitted for Partial Fulfillment of Master Degree in Obstetrics and Gynecology

By

Yasser Abdelrahman Abdelhameed Elsherbiny

M.B.B.CH - Faculty of Medicine Ain Shams University (2012) Resident at Tahreer general Hospital- Giza

Under Supervision of

Ass. Prof. Adel Shafik Salah El-Din

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine- Ain Shams University

Dr. Mohammed Ahmed Faris

Lecturer in Obstetrics and Gynecology Faculty of Medicine- Ain Shams University

Dr. Mohamed Esmat Abbass Shawky

Lecturer in Obstetrics and Gynecology Faculty of Medicine- Ain Shams University

> Faculty of Medicine Lin Shams University 2017

Introduction

Frozen embryo transfer (FET) is assuming a greater role in the practice of infertility than it has in the past. In 2012, 28.4 % of cycles reported to the Society for Assisted Reproductive Technology and the Center for Disease Control and Prevention were frozen embryo transfers compared with 16.1 % in 2003. FET has been primarily utilized when more good quality embryos were produced than could safely be transferred, if there was concern regarding risk of ovarian hyperstimulation syndrome, or when endometrial development during the fresh IVF cycle was inadequate (*Lathi et al.*, 2015).

The clinical value of embryo cryopreservation has steadily increased over the decades with significant technological advances made in our ability to freeze cleavage-stage and blastocyst stage embryos. The first live birth following the transfer of cryopreserved embryos was reported in 1984 and this strategy has been progressively used in assisted reproductive technology (ART) (Zeilmaker et al., 1984).

The number of cryotransfer cycles practiced has increased considerably in recent years for two main

reasons: first, the increased effectiveness (*Cobo et al.*, 2012) and safety (*Liu et al.*, 2013) of the process of embryo vitrification; second, the policy adopted of freezing all embryos in the stimulated cycle and transferring them in a natural or an artificial cycle, with the aim of reducing the risk of ovarian hyperstimulation (*Absalan et al.*, 2013) and of ectopic pregnancy (*Decleer et al.*, 2014).

Among the various potential causes of repeated failure. uterine factors (e.g., implantation thin receptivity, endometrium. endometrial poor and immunological incompatibility) have received the most attention in recent years and management of repeated implantation failure despite transfer of good-quality embryos still remains a dilemma for ART specialists (Margalioth et al., 2006).

Endometrial scratching which is intentional damage to the endometrium, such as biopsy or curettage, in women undergoing assisted reproduction technology (ART) associated with improvement in endometrial receptivity (*Nastri et al.*, 2012).

The first non-randomized paper suggesting this association was published in 2003 reported that

endometrial sampling of IVF patients using a biopsy catheter substantially increases their chances to conceive at the following IVF-embryo transfer cycle. By transferring a similar number of embryos in the study and control groups, the authors achieved an implantation rate of 28 versus 14%, a clinical pregnancy rate of 67 versus 30% and a live birth rate per embryo transfer of 49 versus 23%. They concluded that local injury to the endometrium increased the incidence of implantation. This finding inspired us to perform the study on local injury to the endometrium (*Barash et al.*, 2003).

Although in some previous studies concluded that local injury to endometrium in luteal phase prior to FET cycle had a negative impact on implantation and clinical pregnancy rates, currently there is lack of good evidence to support routine endometrial injury prior to FET treatment (*Aflatoonian et al.*, 2016).

Aim of the Work

The aim of this work is to measure the efficacy of endometrial injury before frozen embryo transfer on pregnancy rate.

Research Question:

In women undergoing frozen embryo transfer, does routine endometrial injury before frozen embryo transfer increase clinical pregnancy rate?

Research Hypothesis:

(Null Hypothesis)

In women undergoing frozen embryo transfer Routine endometrial injury before frozen embryo transfer does not increase clinical pregnancy rate.

(Alternative Hypothesis)

In women undergoing frozen embryo transfer, endometrial injury before the transfer may increase pregnancy rate.

Protocol Outlines

Title:

The efficacy of endometrial injury before frozen embryo transfer on pregnancy rate in IVF and ICSI Cases.

Study Design:

Randomized control study.

Study Population:

Women planned to undergo frozen embryo transfer.

Site of the study (Setting):

ART unit at Faculty of Medicine - Ain -Shams University Hospital.

Study Duration:

Six Months may be extended to more than one year.

Outcome measures:

1. Primary outcome measure:

• Chemical pregnancy rate (serum B-hCG positive).

2. Secondary outcome measure:

• Clinical pregnancy (appearance of gestational sac on transvaginal ultrasound), Implantation rate, and multiple pregnancy rate.

Patients and Methods

During the pre-selection phase (after admission into the ART Unit at Ain Shams University hospital) inclusion and exclusion criteria will be applied.

Inclusion Criteria:

All infertile women have high quality frozen embryos.

Exclusion Criteria:

- 1. Age> 40
- 2. History of endocrine disease such as: diabetes; Hyperthyroidism and Hyperprolactinemia
- 3. History of hysteroscopic surgery due to intrauterine adhesions
- 4. History of cardiovascular, renal or liver disease
- 5. History of stroke or myocardial infarction
- 6. Poor quality embryos
- 7. Alcohol or Substance abuse

Suitable women will be invited to participate in the study then a signed and informed consent will be obtained from them. When the patient's consent is obtained, they are to be included into the study.