

Combined CT coronary angiography and SPECT myocardial perfusion imaging in diagnosis of coronary artery disease.

THESIS

Submitted for partial fulfillment of the *MD degree in Radiodiagnosis*

By

Mohamed Anwar Abo Mesallam

Master degree in Radiodiagnosis Ain Shams University

Supervised By

Dr. Hala Abou Senna

Professor of Radiodiagnosis Faculty of Medicine – Ain Shams University

Dr. Noha Mohamed Osman

Assistant professor of Radiodiagnosis Faculty of Medicine – Ain Shams University

Dr. Haytham Mohamed Nasser

Lecturer of Radiodiagnosis Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University

First, thanks are all due to Allah for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

I am deeply grateful to **Prof. Dr. Hala Abou Senna**, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams university for her valuable help, fruitful advice, continuous support offered to me and guidance step by step till this thesis finished.

I am also greatly indebted to **Dr. Noha Mohamed Osman**, Assistant Professor of Radiodiagnosis, Faculty of Medicine, Ain-Shams University, for her great supervision, great help and available advises.

My deepest appreciation and grateful thanks to **Dr. Haytham Mohamed Nasser**, Lecturer of Radiodiagnosis,

Faculty of Medicine, Ain-Shams University, for continuous encouragement and support.

I want also to thank my father for supporting me throughout my life, my wife for spiritual support & patience, my beauty daughters & lovely son for making my life beautiful.

Mohamed Anwar Abo Mesallam

List of Contents

• Introduction	1
Aim of work	5
Anatomy	7
Anatomy of the coronary arteries	7
Anatomy of the heart	13
Anatomy of the left ventricle	15
SPECT-MPI images normal anatomy	19
CT anatomy of the coronary arteries	22
Pathology	25
Pathology of coronary atherosclerosis	25
Risk factors for coronary artery diseases	30
Consequences of ischemia on the myocardium	39
SPECT-MPI in imaging the heart	43
SPECT-MPI Interpretation	49
Image Analysis	50
Myocardial Perfusion Scoring	51
CT coronary angiography	57
Axial and helical scanning	60
Coronary calcium scoring	63
Computed tomography coronary angiography	66
Axial images	67
Multi-planar reformation	69
Curved Planar Reconstructions	71
Maximum-intensity projections	73
Volume rendering	75

•	Patients and methods	77
	Inclusion criteria	78
	Exclusion criteria	79
	Methodology and data collection	80
	Myocardial perfusion imaging	81
	Stress protocol	82
	SPECT acquisition parameters	86
	CT coronary angiography	91
	Interpretation criteria	95
•	Results	99
	Clinical data of the patients	99
	Risk factors in the study population	104
	Symptoms in the study population	106
	SPECT-MPI for the studied patients	107
	CT coronary angiography for studied patients	108
	CTCA Findings	110
	Relation between SPECT-MPI and CTCA	111
•	Illustrative cases	117
•	Discussion	143
•	Summary and conclusion	153
•	References	157
•	Arabic summary	169

List of Abbreviations

2D	Two dimensional
3D	Three dimensional
AMI	Acute myocardial infarction
BMI	Body mass index
bpm	Beat per minute
CAD	Coronary artery disease
CAG	Coronary angiography
CAT	Computed axial tomography
CPR	Curved planer reformation
CRP	C-reactive protein
CT	Computed tomography
CTCA	CT coronary angiography
DM	Diabetes mellitus
ECG	Electrocardiogram
EDV	End diastolic volume
ESV	End systolic volume
FH	Family History
GE	General electric
HLA	Horizontal long axis
HTN	Hypertension
HU	Hounsfield units
IDDM	Insulin dependent diabetes mellitus
Kg	Kilo gram
KV	Kilo voltage
LAD	Left anterior descending artery
LCX	Left circumflex artery

LDL	Low density lipoprotein
LM	Left main coronary artery
LV	Left ventricle
LVEF	Left ventricular ejection fraction
MA	Milli ampere
MIBI	Methoxyisobutyl isonitrile
MIP	Maximum intensity projection
MPI	Myocardial perfusion imaging
MPR	Multi planar reformation
MSCT	Multi slice CT
MI	Myocardial infarction
NIDDM	Non-insulin dependent diabetes mellitus
NPV	Negative predictive value
OSEM	Ordered subsets expectation maximization
PAI-1	Plasminogen activator inhibitor-1
PDA	Posterior descending artery
PMTs	Photomultiplier tubes
PL	Postero-lateral artery
PPV	Positive predictive value
QGS	Quantitative gated SPECT
RCA	Right coronary artery
RF	Radiofrequency
SA	Short axis
SD	Standard deviation
SDS	Summed difference score
SRS	Summed rest score
SSS	Summed stress score
SMCs	Smooth muscle cells

SPECT	Single photon emission computed tomography
SSD	Shaded surface displays
Tc	Technetium
VLA	Vertical long axis
VR	Volume rendering

Index of Figures

Figure No.	Comment	Page No.
1	Coronary arteries and their branches.	7
2	Right coronary artery and its branches.	9
3	The Left main coronary artery, LAD artery, LCx artery and their branches.	10
4	Coronary arteries variations.	13
5	Blood flow in cardiac circulations.	15
6	Cross section through the left ventricle.	16
7	Segmentation of the left ventricle.	18
8	SPECT images compared with illustrations of the heart from similar views.	20
9	Normal SPECT myocardial perfusion study.	21
10	Volume rendering image shows the normal course of coronary arteries.	22
11	Axial CT images of normal heart.	23
12	The stages in the development of atherosclerosis.	27
13	Sequential progression of coronary artery lesion morphology.	29
14	Risk factors for coronary artery disease.	30
15	Standard tomographic heart slices.	47
16	Quantitative gated SPECT analysis.	48
17	SPECT- MPI cross-sectional slices through the short axis of the myocardium.	49
18	Diagrammatic representation of the segmental division of the SPECT-MPI slices.	50

Figure No.	Comment	Page No.
19	Graduated color scale.	51
20	Case of hibernating myocardium shown on a 24-hour thallium image.	56
21	Basic components of CT scanner.	58
22	Rotate-stationary configuration.	58
23	Rotate-rotate configuration. Opposing source and detector rotate synchronously.	59
24	Axial versus helical scanning System.	61
25	Illustration of the acquisition principle of dual-source CT.	62
26	Axial CT image through the heart showing the right and left coronary ostia.	69
27	Sagittal multi planar reformat.	71
28	Two Curved planar reformatted images of the right coronary artery	72
29	Curved planar reformatted image shows a mixed type of calcified plaque at the right coronary artery.	72
30	Coronal oblique maximum intensity projection images show the PDA branch (arrow) and postero-lateral left ventricular branches of the RCA.	74
31	Sagittal maximum intensity projection showing the right and left coronary ostia	74
32	Axial oblique and posterior coronal volume-rendered images show the PDA and the postero-lateral left ventricular branch.	76
33	Gender of studied patients.	77
34	Patient's age distribution.	78

Figure No.	Comment	Page No.
35	Dual head Gamma Camera (GE) used in cardiac scan in police hospital.	85
36	Standard model showing the 17 segments of the coronary arterial territories.	88
37	CT (Toshiba) used in CTCA in police hospital.	91
38	Prevalence of smokers in positive and negative CAD patients.	99
39	Prevalence of hypertension in positive and negative CAD patients.	100
40	Prevalence of hyper-cholesterolemia in positive and negative CAD patients.	101
41	Prevalence of DM in positive and negative CAD patients.	102
42	Prevalence of family history in positive and negative CAD patients.	103
43	Prevalence of obesity in positive and negative CAD patients.	104
44	Prevalence of risk factors in a descending order.	105
45	Prevalence of symptoms in patients with reversible and irreversible perfusion defects a descending order.	107
46	Percentage of normal and abnormal perfusion scans.	108
47	Prevalence of calcification in patients with positive and negative CAD.	109
48	Relation between SPECT – MPI and CTCA.	112
49	SPECT-MPI findings in heavy calcified coronaries by CT.	113

Figure No.	Comment	Page No.
50	The percentages of negative or positive CTCA among patients with negative or positive SPECT – MPI results.	114
51	The percentages of negative or positive SPECT-MPI among patients with negative or positive CTCA results.	115
52	PPV and specificity for CTCAand SPECT-MPI.	116
53	Results of combined SPECT – MPI / CTCA.	116

Index of tables

Table No.	Comment	Page No.
1	Terms describing the status of the myocardium.	53
2	Treadmill graded modified Bruce protocol.	83
3	Segmental scoring of left ventricular segments.	89
4	Summed Stress Score.	90
5	Summed Difference Score.	90
6	Risk factors in the study group.	105
7	Symptoms in the study group.	106
8	Degree of calcification in studied patients.	109
9	Calcium score in each decade of the study group.	110
10	Analysis of CTCA data.	111
11	The results for CTCA with corresponding SPECT- MPI.	113

Combined CT coronary angiography and SPECT myocardial perfusion imaging in diagnosis of coronary artery disease.

Hala Abou Senna 1; Noha Mohamed Osman 2; Haytham Mohamed Nasser 3; Mohamed Anwar Abo Mesallam4

1Professor of Radio-diagnosis, 2Assistant professor of

Radio-diagnosis, 3Lecturer of Radio-diagnosis, 4Radio-

diagnosis specialist

Radio-diagnosis department, Ain Shams University, Cairo, Egypt

Corresponding Author; Mohamed Anwar Abo Mesallam

Email: Moh.nehal.14@gmail.com.Tel.01005525473

Abstract

Purpose of this study is to assess the benefits of combined CTCA and SPECT myocardial perfusion imaging over usage only one of them as diagnostic device especially in population at risk for coronary artery disease. **Methods**: The study included 40 patients 16 females and 24 males presented with risk factors or clinical suspicion for coronary artery disease referred from Cardiologists to Radio-diagnosis Department. Each patient included in the study was subjected to full history taking, reviewing medical sheet including: -

Risk factors (diabetes, hypertension, hyper-lipidaemia, smoking, obesity, history of ischemic heart disease or ICU admission and positive family history for ischemic heart disease), Chest pain (onset, course, duration, relation to exertion, sites of radiation, relieving factor), History of cardiac investigation (stress ECG, echocardiography, cardiac catheterization) if done. Results: Using combined SPECT-MPI /CTCA results as referred criteria, the positive predictive value (PPV) and specificity for CTCA predicting abnormal hemodynamics are relatively low, where is (PPV) and specificity for SPECT-MPI are relatively high. Combined SPECT-MPI /CTCA Improves diagnostic performance in the mis-matched results and the equivocal lesions. Conclusion: CTCA and SPECT-MPI provide different and complementary information on CAD, namely, detection of atherosclerosis versus detection of ischemia, correlating lesion location with functional significance, factors which are extremely important for the decision-making process.

Key Words: CTCA - SPECT-MPI.

Introduction

Each year, an estimated 1.5 percent of the population presents to primary care providers with chest pain. Moreover, coronary artery disease (CAD) is responsible for 8 to 10 percent of emergency department visits (*Fihn et al.*, 2012).

Reduction in the prevalence, morbidity, and mortality related to CAD is an important public health goal given the significant disease burden and contribution to total health care costs. Accurate, early diagnosis of CAD is important for initiation of appropriate treatment and reduction of CAD-related morbidity and mortality (*Gottlieb et al.*, 2010).

Historically, invasive coronary angiography (ICA) has been considered the standard reference diagnostic test for anatomic CAD and provides information on coronary artery anatomy and lumen obstruction. Angiography may overestimate or underestimate disease as estimation is influenced by a variety of technical factors as well as the

complexity of coronary anatomy and plaque configuration. Many lesions are eccentric, so the apparent degree of stenosis can vary depending on the angle of visualization, and reproducibility on measurement of stenosis is considered only moderate (*Cheng et al.*, 2011).

Standard ICA also does not necessarily detect outward remodeling of the coronary artery, which may present a situation in which there is a large amount of plaque volume without significant lumen obstruction. Complications of ICA include those related to local anesthesia and use of contrast material, as well as infection, local vascular injury, myocardial infarction, stroke, and death (*Yoo et al.*, 2011).

Because of the cost and risk of ICA, noninvasive testing is more appropriate as a first-line diagnostic test for patients presenting with chest pain or other symptoms of IHD and who are deemed to be stable and not experiencing acute coronary events (*Dedic et al.*, 2013).

Noninvasive diagnostic tests can be broadly divided into two categories: functional tests and anatomic tests.