

Effect of ionizing radiation and heat treatment on oxide glass for some practical applications

A Ph.D. Thesis submitted To

Chemistry Department Faculty of Science Ain Shams University

Omnia Ibrahim Hussein Sallam

M.Sc. (Physical Chemistry)
Egyptian Atomic Energy Authority

Ain Shams University Faculty of Science

Effect of ionizing radiation and heat treatment on oxide glass for some practical applications

A Thesis

Submitted to the Faculty of Science, Ain Shams University, in Partial Fulfillment of Requirements of phD Degree in **Inorganic Chemistry**

By

Omnia Ibrahim Hussein Sallam

Under Supervision of

Prof. Dr./ Ebtissam Ahmed Saad

Professor of Inorganic Chemistry Faculty of Science - Ain Shams University

Prof. Dr./ Abdel-Hamid Hussien Zahran

Professor of Radiation Chemistry (NCRRT) - Atomic Energy Authority

Prof. Dr./ Fathy Mahmoud Ezz El-din_

Professor of Radiation Chemistry (NCRRT) - Atomic Energy Authority

Prof.Dr./ Nagia Abdel-Hamid Elalily and asset as

Professor of Radiation Chemistry (NCRRT) - Atomic Energy Authority

Ain Shams University Faculty of Science Chemistry Department

Approval Sheet

Thesis Title: Effect of ionizing radiation and heat treatment on oxide glass for some practical applications

Name of candidate:

Omnia Ibrahim Hussein Sallam

Degree of doctor of philosophy (Ph.D) in chemistry This Thesis is approved by:

Prof. Dr./ Ebtissam Ahmed Saad

Professor of Inorganic Chemistry, Faculty of Science - Ain Shams University

Prof.Dr./ Abdel-Hamid Hussien Zahran Richard

Professor of Radiation Chemistry (NCRRT) - Atomic Energy Authority

Prof.Dr./ Hatem El-Batal

Professor of inorganic chemistry- National Research Center, Egypt

Prof.Dr./ Samir Yousef Marzouk

Professor and Head Department Of Basic And Applied Science- College of engineering and technology- Arab Academy for Science, Technology and Maritime Transport-Cairo branch

Head of Chemistry Department Prof.Dr./ Ebrahim H. A. Badr

Acknowledgement

Praise and Thanks be to ALLAH, the most merciful for assisting and directing me the right way.

I would like to express my deepest and sincere gratitude to **Prof. Dr. Ebtissam Saad**, Professor of inorganic chemistry, Faculty of science, Ain Shams University, for her sponsorship, constructive criticism and deep concern in this work.

I am cordially indebted to my advisor **Prof. Dr. Abdel-Hamid Zahran**, Prof. of Radiation Chemistry, National Center for Radiation Research and Technology (NCRRT), for continuous interest, fruitful discussion, direct supervision and valuable guidance throughout this work.

Also many thanks to my Supervisor Prof. Dr. Fathy Ezz El-Din and Prof. Dr. Nagia Elalily, Prof. of Radiation Chemistry, National Center for Radiation Research and Technology (NCRRT), for suggesting the research point of this thesis, providing all work facilities, valuable discussion, guidance, critical reading of this work, for all supports, understanding, for constructive criticism on thesis during writing, they always encourage me and push me for success. Also sincere thanks for their hospitality, advice and supervision was invaluable.

Many thanks to all my colleagues (Assistant Prof. Dr. Wessam, Dr. Eman) in the Department and also those in the Center (NCRRI) for facilities offered and continuous encouragement in various ways.

Omnia I. Sallam

ABSTRACT

Glasses from the system [47 P₂O₅ - 23 Na₂O - 6 Al₂O₃ - (24-x) PbO- x MoO₃] where x=0.5, 1, 3 %wt have been prepared using the conventional melting at temperature 1000-1100 °C then annealed at 400 °C. Also the formed glass samples were heat treated using three different temperatures 350, 450 and 550 °C according to the DSC results. The x-ray diffraction analysis showed that glass samples are amorphous even after heat treatment. Also the obtained XRD results showed there is no crystalline phase observed after heat treatment. The final composition was obtained by EDX measurements after melting process. FTIR studies were determined before and after being exposed to gamma radiation at different doses (2.5, 10, 50 kGy). The results of absorption measurements showed that the main bands at 1064 and 887 cm⁻¹ of pyrophosphate and metaphosphate units, respectively. Also radiation showed minor changes in the wavenumber of the IR bands. Spectral absorbance and transmittance were recorded in the spectral range (200- 1000 nm) to investigate the effects of different molybdenum concentrations and gamma radiation on the prepared glass samples. The Absorption dispersion parameters such as: Urbach energy and optical energy gap for direct and indirect transition were determined. The values of $E_{\rm g}$ lie between 2.31-4.62 ev.

The durability of the phosphate glass samples was tested in 0.1N HCl and distilled water before and after being radiated with 50 kGy. The chemical durability results of the glass samples were obtained by calculating the weight loss percentage, also the change in the values of the pH of the corroded solution was measured. The morphology of the surface of the glass samples were examined by SEM. The results showed that the most durable glass sample was the phosphate glass with 3 %Mo.

Electron spin resonance (ESR) measurements were studied before and after being exposed to different radiation doses (2.5, 10, 50, 80 kGy) showing that molybdenum is found in the glass network as Mo⁵⁺ not as Mo³⁺. The ESR results were supported by measuring the electrical conductivity of the prepared glass. Electrical conductivity was demonstrated for all glass samples before and after

radiation. It was found that electrical conductivity in the glass samples occurred by ionic and electronic conduction which can be cleared by the density results. Density was measured using Archimedes principle at room temperature and it was found that the density decreased by increasing the molybdenum content, also molar volume and specific volume were calculated.

To recognize the effect of heat treatment on the characteristic vibrational bands of the structural building units of all the glass samples, we studied FTIR spectra at different heat treatment temperatures (350, 450 and 550 0 C). Also studying the UV and ESR spectra after the effect of heat treatment and changes on the glass surface that could be illustrated by SEM images.

Key words: phosphate glass, molybdenum oxide, chemical durability, optical measurements, ESR, electrical conductivity and density.

LIST OF CONTENTS **Page** List of Schemes. List of Tables. List of Figures Chapter I: Introduction & Review of Literature..... 1 1 1. Glass 1 2. Glass definition 3 3. Theories of glass structure 3 Goldschmidt's theory [1987] a. 4 h. Zachariasen's random network theory [1932] Sun's single bond strength criterion 6 c. 6 d. Rawson's hypothesis Dietzel's field strength criterion 7 e. 8 f. Stanworth's correlation (1971) Poulian suggestion [1981] g. 8 4. Making glass 9 5. Examples of Vitrifiable substances 10

6. Oxide glasses	13
7. Classification of glass components	13
8. Defects in glass	15
9. Effect of gamma ray on glass	18
10. Phosphate glasses	20
10.1.Properties of phosphate glass	20
10.2.Structure and geometry of phosphate glass	24
11. General applications of glass	25
12. Different techniques for glass characterization	32
12.1.Optical spectra	32
12.2. ESR	36
12.3. Density	37
12.4. Electrical properties of glass	37
12.5. Chemical durability	39

Aim of w	vork	41
Chapter II:	Materials and methods	43
Mate	rials	43
Meth	ods	43
	Preparation of glass samples	44
	Preparation of corresponding heat treated glass	44
	Gamma radiation facility	45
	XRD measurements	45
	Electron Dispersive analysis	46
	Optical Measurments	46
	Density	48
	Molar volume and Specific volume	48
	Electrical Conductivity	49
	ESR	50

Chemi	ical durability	51	
SEM		52	
Chapter III: Re	esults & Discussion	54	
1. XRD ana	alysis	54	
2. EDX		54	
3. Interpreta	ation of the FTIR spectra of the studied glasses	56	
	ne FTIR deconveluted spectra of base lead bhate glass sample	57	
3.2. Co	ondition of molybdenum in glasses	61	
3.3. Ef	fect of radiation on glass samples	66	
4. UV measurements			
	psorption spectra of phosphate free MoO ₃ glass)	75	
4.2. At MoO ₃	osorption spectra of phosphate containing	79	
4.3. Gr	rowth curve	82	

	4.4.	Transmission measurement	83
	4.5.	Effect of radiation	86
5.	Energy gap		91
6.	Urbach Ene	ergy	98
7.	Density me	asurmets	102
	7.1.	Effect of radiation on density	104
8.	Specific vol	lume and Molar volume	106
9.	Electrical co	onductivity (effect of composition)	108
	9.1.	Effect of temperature	112
	9.2.	Effect of radiation	115
10	.Electron sp	in resonance spectroscopy measurements	120
		ect of molybdenum concentration on the R signal	121
	10.2 Effe	ect of radiation on ESR spectra	124
11.	Chemical du	urability measurements	128

11.1. Effect of radiation	134
11.2.Effect of Immersion time in solution pH	138
11.3. Scanning Electron Microscopy of the corroded samples	143
11.4.FTIR of corroded glass	146
12. DSC measurements	148
13.Heat treated glass samples	149
13.1. X-ray diffraction analysis	150
13.2.FTIR measurements	151
13.3.UV measurements	154
13.4.Electron Spin Resonance Spectroscopy	156
13.5. SEM	158
Chapter IV : Summary & Conclusion	160
Chapter V : Reference	171
ARABIC SUMMARY	_