

MAXIMIZATION OF THE CAPACITY OF DISPATCHABLE DG UNITS TO BE INSTALLED ON RADIAL DISTRIBUTION SYSTEM

By

Taha Abdel Hady Abdel Baseer Hussein

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science
in
Electrical Power and Machines Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2015

MAXIMIZATION OF THE CAPACITY OF DISPATCHABLE DG UNITS TO BE INSTALLED ON RADIAL DISTRIBUTION SYSTEM

By

Taha Abdel Hady Abdel Baseer Hussein

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science
in
Electrical Power and Machines Engineering

Under the Supervision of **Prof. Dr. Mahmoud A. M. Farrag**

Electrical Power Engineering Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

MAXIMIZATION OF THE CAPACITY OF DISPATCHABLE DG UNITS TO BE INSTALLED ON RADIAL DISTRIBUTION SYSTEM

By

Taha Abdel Hady Abdel Baseer Hussein

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science
in
Electrical Power and Machines Engineering

Approved by the Examining Committee:	
Prof. Dr. Mahmoud A. M. Farrag	Thesis Advisor
Prof. Dr. Zeinab Hanem Mohamed Osman	Internal Examiner
Prof.Dr.Ebtisam Mostafa Mohamed Saied (Electrical Power Department, Faculty of Engineering Benha University, Shoubra)	External Examine

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

ACKNOWLEDGMENTS

Firstly, I would like to thank Allah for guiding and helping me to accomplish this thesis.

I would like to extend my sincerest gratitude and thanks to Prof. Dr. Mahmoud Ali Farrag for his excellent supervision, encouragement, guidance, invaluable advices and support for me throughout this thesis.

I would like to give thanks to my colleagues for their continuous encouragement.

I would like to express my deep appreciation to my mother, sisters and brothers for their continuous encouragement.

To my wife thank you from my heart for endurance, providing understanding and encouragement, and for the moral support you gave which has enabled me to finish this work. Special thanks to my kids (Abdel Rahman and Nour) who are my happiness forever, I present this work to the spirit of my dear father.

Table of Contents

ACI	KNOWLEDGMENTi
TAI	BLE OF CONTENTESii
LIS'	T OF TABLESvi
LIS	T OF FIGURESx
NO	MENCLATURE xiii
ABS	STRACTxv
CH	APTER 1: INTRODUCTION
1.1.	OVERVIEW1
1.2.	DG UNIT DEFINITIONS
1.3.	BENEFITS OF DG UNITS
1.4.	IMPORTANT CLASSIFICATION OF CONVENTIONAL DG UNITS
1.5.	OPERATION MODES OF DG UNITS6
1.	5.1. Base load operation mode6
	5.2. Peak shaving operation mode
1	5.3. Export/Import operation mode
1.6.	SITES OF DG UNITS ON POWER SYSTEM8
1.7.	STANDARD SIZES AND COSTS OF DG UNITS8
1.	.7.1. Standard Sizes of DG Units8
1	.7.2. Capital costs of DG units as compared with capital cost of central power plants
1.8.	OWNERSHIP OF DG UNITS IN POWER SYSTEM12
1.9.	THESIS OBJECTIVES AND ORGANIZATION12
CH	APTER 2: BASIC CHARACTERISTICS OF CONVENTIONAL DG UNITS FROM PLANNING POINT OF VIEW14

2.1. INTRODUCTION	14
2.2. TECHNICAL IMPACTS OF DG UNITS	14
2.2.1. Impact of DG on voltage profile	14
2.2.2. Impact of DG on voltage flicker	14
2.2.3. Impact of DG on Losses	15
2.2.4. Impact of DG on Harmonics	15
2.2.5. Impact of DG units on, protection system	15
2.2.6. Impact of DG units on reliability	16
2.3. BASIC IMPORTANT CHARACTERISTICS OF DG FROM PLANNING POINT OF VIEW	16
2.3.1. Internal consumption engines	17
2.3.1.1. Reciprocating engines	17
2.3.2. Gas Turbines	19
2.3.3. Combined Cycle Gas Turbines	19
2.3.4. Micro –turbines	20
2.3.5. Fuel- Cell	22
2.3.6. Biomass	24
2.4. Connection Methods of DG Units to the Grid	25
CHAPTER 3 : IDENTIFICATION OF PLANNING PROBLEM FOR CONVENTIONAL DG	
UNITS AND LITERATURE SURVEY	28
3.1. INTRODUCTION	28
3.2. GENERAL DG PLANNING PROBLEM DEFINITION	28
3.3. PLANNING OF PRIVATELY OWNED DG UNITS	28
3.4. PLANNING OF UTILITIES OWNED DG UNITS	28
3.4.1. Economical approach	28
3.4.2. Technical approach	29
3.5. SOLUTION ALGORITHMS	30

3.6.	LITERATURE SURVEY ON MAXIMIZATION OF DG CAPACITY	30
СН	APTER 4 : A Mathematical Planning Model For Maximization Of DG Capacity On	22
4 1	Distribution Feeders	
	INTRODUCTION	
	MATHEMATICAL PLANNING MODEL	
4.3.	MODEL VERIFICATION	36
4	4.3.1. System description	36
4	4.3.2. Base case study results	37
4	4.3.3. Optimum planning results: case one	40
4	4.3.4. Optimum planning results: case two	59
4.4.	CONCLUSION	77
CH	APTER 5: Model Application on 31-Bus System	78
5.1.	INTRODUCTION	78
5.2.	MODEL APPLICATION	78
5	5.2.1 System description	78
5	5.2.2 Base case study results	80
5	5.2.3. Optimum planning results: case one	84
5	5.2.4. Optimum planning results: case two	104
5.3	CONCLUSION	124
СН	APTER 6: CONCLUSION AND FUTURE WORKS.	. 125
6.1.	CONCLUSION	125
6.2.	RECOMMENDATION AND FUTURE WORKS	125
RE	FRENCES	. 126
	PENDICES	
·— -	Appendix A : Single Line Diagram for 12 Buses Radial System	
	Annordiv R · Rus load data for 12 Ruses Padial System	

Appendix C :	Branch data for 12 Buses Radial System	134
Appendix D :	Single Line Diagram For 31 Buses Radial System	135
Appendix E :	Bus Load Data For 31 Buses Radial System	136
Appendix F :	Branch Data For 31 Buses Radial System	137

LIST OF TABLES

Table 1.1: Typical available sizes of DG per module
Table 1.2: Distributed generation technologies and the issues11
Table 2.1: Typical summary of DG technologies26
Table 2.2: Distributed generation technologies and characteristics27
Table 4.1: Typical results of base case study
Table 4.2: Branch current values of base case study40
Table 4.3: Typical results of case one-A, when substation bus voltage is constant
Table 4.4: Bus voltage values of case one-A, Substation bus voltage is constant
Table 4.5: Branch current values of case one-A, Substation bus voltage is constant
Table 4.6: Typical results of case one -A, Variable substation voltage45
Table 4.7: Bus voltage values of case one -A, Variable substation voltage46
Table 4.8: Branch current values of case one -A, Variable substation voltage
Table 4.9: Typical results of case one – B, Substation bus voltage is constant
Table 4.10: Bus voltage values of case one – B, Substation bus voltage is constant
Table 4.11: Branch current values of case one – B, Substation bus voltage is constant
Table 4.12: Typical results of case one-B, Variable substation voltage54
Table 4.13: Bus voltage values of case one-B, Variable substation voltage55
Table 4.14: Branch current values of case one-B, Variable substation voltage
Table 4.15: Typical results of case two-A, Substation bus voltage is constant

Table 4.16: Bus voltage values of case two-A, Substation bus voltage is constant
Table 4.17: Branch current values of case two-A, Substation bus voltage is constant
Table 4.18: Typical results of case two-A, Variable substation voltage63
Table 4.19: Bus voltage values of case two-A, Variable substation voltage
Table 4.20: Branch current values of case two-A, Variable substation voltage
Table 4.21: Typical results of case two- B, Substation bus voltage is constant
Table 4.22: Bus voltage values of case two- B, Substation bus voltage is constant
Table 4.23: Branch current values of case two- B, Substation bus voltage is constant
Table 4.24: Typical results of case two-B, Variable substation voltage72
Table 4.25: Bus voltage values of case two-B, Variable substation voltage
Table 4.26: Branch current values of case two-B, Variable substation voltage
Table 5.1: Typical results of base case study81
Table 5.2: Bus voltage values of base case study82
Table 5.3: Branch current values of base case study83
Table 5.4: Typical results of case one -A, Substation bus voltage is constant
Table 5.5: Bus voltage values of case one -A, Substation bus voltage is constant
Table 5.6: Branch current values of case one -A, Substation bus voltage is constant
Table 5.7: Typical results of case one -A, Variable substation voltage89
Table 5.8: Bus voltage values of case one -A, Variable substation voltage90

Table 5.9: Branch current values of case one -A, Variable substation voltage
Table 5.10: Typical results of case one- B, Substation bus voltage is constant95
Table 5.11: Bus voltage values of case one- B, Substation bus voltage is constant96
Table 5.12: Branch current values of case one- B, Substation bus voltage is constant
Table 5.13: Typical results of case one-B, Variable substation voltage99
Table 5.14: Bus voltage values of case one-B, Variable substation voltage
Table 5.15: Branch current values of case one-B, Variable substation voltage
Table 5.16: Typical results of case two-A, Substation bus voltage is constant
Table 5.17: Bus voltage values of case two-A, Substation bus voltage is constant
Table 5.18: Branch current values of case two-A, Substation bus voltage is constant
Table 5.19: Typical results of case two-A, Variable substation voltage .109
Table 5.20: Bus voltage values of case two-A, Variable substation voltage
Table 5.21: Branch current values of case two-A, Variable substation voltage
Table 5.22: Typical results of case two- B, Substation bus voltage is constant
Table 5.23: Bus voltage values of case two- B, Substation bus voltage is constant
Table 5.24: Branch current values of case two- B, Substation bus voltage is constant
Table 5.25: Typical results of case two-B. Variable substation voltage .119

Table 5.26: Bus voltage values of case two-B, Variable substation voltag	je
1	20
Table 5.27: Branch current values of case two-B, Variable substation	
voltage1	21

LIST OF FIGURES

Figure 1.1: Typical duration load curve for DG in the base load operation mode
Figure 1.2: Typical duration load curve for DG in the peak shaving operation mode
Figure 1.3: Typical duration load curve for DG in the Export/Import operation mode
Figure 4.1: Voltage and power parameters related to branch k of two end buses i and j
Figure 4.2: Power balance of bus i
Figure 4.3: power flow on feeding substation connected to bus number 1
Figure 4.4: Single Line Diagram for 12 Buses Radial System36
Figure 4.5: Bus voltage values of base case study40
Figure 4.6: Bus voltage values of case one-A, Substation bus voltage is constant
Figure 4.7: Bus voltage values of case one-A, Variable substation voltage
Figure 4.8: Power values of case one-A, Substation bus voltage is constant
Figure 4.9: Power values of case one-A, Variable substation voltage49
Figure 4.10: Bus voltage values of case one- B, Substation bus voltage is constant
Figure 4.11: Bus voltage values of case one- B, Variable substation voltage
Figure 4.12: Power values of case one- B, Substation bus voltage is constant
Figure 4.13: Power values of case one- B, Variable substation voltage58
Figure 4.14: Bus voltage values of case two-A, Substation bus voltage is constant

Figure 4.15: Bus voltage values of case two-A, Variable substation voltage66
Figure 4.16: Power values of case two-A, Substation bus voltage is constant
Figure 4.17: Power values of case two-A, Variable substation voltage67
Figure 4.18: Bus voltage values of case two- B, Substation bus voltage is constant
Figure 4.19: Bus voltage values of case two- B, Variable substation voltage
Figure 4.20: Power values of case two- B, Substation bus voltage is constant
Figure 4.21: Power values of case two- B, Variable substation voltage76
Figure 5.1: Single Line Diagram for 31 Buses Radial System79
Figure 5.2: Bus voltage values of base case study81
Figure 5.3: Bus voltage values of case one-A, Substation bus voltage is constant
Figure 5.4: Bus voltage values of case one-A, Variable substation voltage
Figure 5.5: Power values of case one-A, Substation bus voltage is constant
Figure 5.6: Power values of case one-A, Variable substation voltage93
Figure 5.7: Bus voltage values of case one- B, Substation bus voltage is constant
Figure 5.8: Bus voltage values of case one- B, Variable substation voltage
Figure 5.9: Power values of case one- B, Substation bus voltage is constant
Figure 5.10: Power values of case one- B, Variable substation voltage .103
Figure 5.11: Bus voltage of case two-A, Substation bus voltage is constant
Figure 5.12: Bus voltage values of case two-A, Variable substation voltage

Figure 5.13: Power values of case two-A, Substation bus voltage is constant
Figure 5.14: Power values of case two-A, Variable substation voltage113
Figure 5.15: Bus voltage values of case two- B, Substation bus voltage is constant
Figure 5.16: Bus voltage values of case two- B, Variable substation voltage
Figure 5.17: Power values of case two- B, Substation bus voltage is constant
Figure 5.18: Power values of case two- B, Variable substation voltage .123