Comparative Study of Biological Tibial Fixation Intramedullary Versus Surface Fixation

Thesis

For fulfillment of M.D. Degree in orthopedics

By

Amir Nabil AbouZeid

Under supervision of

Dr. Talaat El-Hadidi

Professor of Orthopedics, CairoUniversity

Dr. wessam Gaber El-Anani

Professor of Orthopedics, CairoUniversity

Dr. Mohamed Omar Soliman

Professor of Orthopedics, Cairo University

Cairo University

2015

Abstract

Comparative study in biological fixation of fractur tibia between Minimal Invasive percutaneous plating osteosynthesis and intramedullary nail. This approach is described as 'biological internal fixation'. It involves the use of locked internal fixators which have minimal implant-to-bone contact, long-span bridging and fewer screws for fixation. Formerly, internal fixation with a plate aimed at absolute stability to avoid micromovement which could result in loosening of the implant and a delay in healing. The new technique of internal fixation, however, seems to tolerate and even require some degree of mobility of the interface of the fracture.

Keywords: Biological- Intramedullary- TARPO- DCS- DVT

Acknowledgements

First I would like to thank our Almighty God for his great help and support during this work the compassionate and merciful, whose help is the main factor in accomplishing this work.

I would like to express my appreciation and sincere gratitude and deepest thanks to Prof. Talaat El-Hadidi Professor of Orthopedic Surgery Department Faculty of Medicine –Cairo University, for his great help and encouragement and his help in reviewing the manuscripts of this work, which made this work possible.

And my respective gratitude to Prof. Wessam Gaber El-Anani Professor of Orthopedic Surgery Faculty of Medicine - Cairo University, for his supervision and enormous help, constant advise, constructive criticism.

And my respective gratitude to Prof. Omar Soliman Professor of Orthopedic Surgery Faculty of Medicine - Cairo University, for his supervision and enormous help, constant advise, constructive criticism.

Finally I would like to record my appreciation and thanks to everyone in my senior staff and colleagues helped me in my work.

Contents

Title	Page
Acknowledgement	I
List Of Figures	II
List Of Tables	IX
List of Abbreviations	X
Introduction	1
Aim Of The Work	2
Biology Of Bone Healing	3
Principles Of Biological Fixation	26
Principles Of Locked Plate	55
MIPO	67
Intramedullary Nailing of Tibial Fractures	77
Patients And Methods	90
Results	104
Case Presentation	116
Discussion	122
Conclusion	144
Summary	145
References	147

List Of Figures

Number	Title	Page
Fig (1)	Diagram illustrating alternative methods of	7
	bridging a fracture by external callus	
Fig (2)	Unsplinted rib fracture in a sheep at three weeks	8
Fig (3)	Blood vessels in external callus originating from	8
	the soft tissues	
Fig (4)	Part of the callus from a healing rib fracture in a	11
	sheep at two weeks showing the multifocal cellular	
	and osteogenic activity	
Fig (5)	Radiograph showing pattern of early callus	11
	formation in a displaced fracture of the human	
	femur	
Fig (6)	Formation of new Haversian system in normal	13
	cortical bone	
Fig (7)	Dead bone end in displaced fracture undergoing	13
	resorption	
Fig (8)	The left tibia at six weeks after traumatic	15
	amputation	
Fig (9)	The right tibia sustained a fracture in the same	15
	accident	

Ei~ (10.)	Amoustation atumn at nine days showing" primary	17
Fig (10)	Amputation stump at nine days showing" primary	17
	callus response"	
Eig (11)	Amoutation atumn at accompany days showing	17
Fig (11)	Amputation stump at seventeen days showing	17
	Involution of the primary callus response that has	
	begun.	
Fig (12)	Uniting fracture at seventeen days. Callus	17
	formation has progressed leading to formation of	
	bridging external callus'	
Fig (13)	Formation of medullary callus in a fracture	22
	immobilized by compression plating.	
Fig (14)	Fracture immobilized by compression plating	22
	showing bridging of the fragments by a cutter	
	head" and the filling of a non-contact area by	
	medullary bone	
Fig (15)	Rib fracture in sheep with excision of a bone	23
	segment at four weeks the advance of medullary	
	callus into the organized fibrous tissue provides a	
	clear-cut line of demarcation	
Fig (16)	Radiographs showing the evolution of fracture	28
	treatment	
Fig (17)	Direct healing and induction of remodelling	30
E' (10)	D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	21
Fig (18)	Radiographs showing unstable plate fixation	31
	resulting in nonunion	
Fig (19)	Clinical and experimental observations regarding	34

	unstable interfaces	
Fig (20)	The relation of gap width and instability producing	36
	strain	
Fig (21)	Photomicrographs of strain-induced resorption of	38
	osteotomy surfaces and of initial bridging	
Fig (22)	Radiographs showing biological internal fixation	42
	of a simple spiral fracture of the tibia. Simple	
	fractures can be successfully treated by biological	
	internal fixation	
Fig (23)	The tolerance of instability of simple versus	43
	multiple fracture lines	
Fig (24)	Principle of the locked screw	44
Fig (25)	The different effects of internal (Haversian)	46
	remodelling of cortical bone	
Fig (26)	The aetiology of early temporary porosity	47
Fig (27)	Adverse effect of intensified early temporary	47
	porosis, the porosity is located between the living	
	and the necrotic bone in close contact with the	
	living bone	
Fig (28)	Reduction of contact of a plate to bone can be	48
	achieved by appropriate selection of the radius of	
	the plate undersurface or by undercutting the latter	
Fig (29)	Local resistance to infection	48

Fig (30)	Refracture and plate contact	49
Fig (31)	Diagrams showing improved anchorage of	50
	divergent locked screws	
Fig (32)	Flexibility and length of plate with pull-out load	53
Fig (33)	Internal fixator and bone healing	53
Fig (34)	Minimally invasive percutaneous osteosynthesis	54
	(MIPPO)	
Fig (35)	The forces that must be overcome by any method	56
	of fracture fixation	
Fig (36)	Axial force is countered during compression plate	56
	fixation by the product of A (the normal force	
	provided by screw torque) and B (the coefficient of	
	friction between the plate and bone)	
Fig (37)	Schuhli nuts turn a conventional dynamic	58
	compression plate into a fixed-angle device.	
	A Plate and screws with the central Schuhli nut	
	expanded.	
	B Schematic of the Schuhli nut.	
	C Schuhli nut locks plate to screw, creating a	
	fixed-angle device	
Fig (38)	Locked screws are used when a bridge-plate	59
	technique is applied to span an area of	
	comminution	
<u> </u>		l

Fig (39)	Deformation of the screw-hole track after	61
	application of a three-point-bending load to failure	
Fig (40)	Guidelines for the appropriate use of standard or	63
	locked plates, or plates combining the two fixation	
	modes	
Fig (41)	A seventy-four-year-old man sustained a proximal	66
	humeral fracture in a fall	
Fig (42)	MIPO proximal tibia - medial approach	70
Fig (43)	Diaphyseal tibial fracture type 42-C with proximal	71
	extension; internal fixation by MIPO technique	
Fig (44)	Proximal tibia fracture C1/AO (C,D) MIPPO with	72
	LISS PLT	
Fig (45)	Proximal tibia fracture (type C3/AO)	73
Fig (46)	Devices for MIPO technique	74
Fig (47)	MIPO of distal tibia by medial approach with	75
	fracture healing at 4 months	
Fig (48)	Lateral illustration of appropriate positioning of the	86
	knee in 10° to 15° of flexion	
Fig (49)	Photograph demonstrating the trocar placed	87
	through the incision	
	Lateral C-arm radiograph after the tibial nail has	
	been placed in the medullary canal	

Fig (50)	A pie chart showing the ratio between male and	91
	female in the MIPPO group.	
Fig (51)	A pie chart showing the ratio between male and	92
	female in the interlocking group	
Fig (52)	A pie chart showing the ratio between different	93
	mode s of trauma in the MIPPO group	
Fig (53)	A pie chart showing the ratio between different	94
	mode s of trauma in the interlocking group	
Fig (54)	A pie chart shows the ratio between closed and	95
	open fracture in the MIPPO group	
Fig (55)	A pie chart showing the ratio between closed and	95
	open fractures in the interlocking group	
Fig (56)	A pie chart showing the ratio between isolated and	96
	associated injuries in the MIPPO group.	
Fig (57)	A pie chart showing the ratio between isolated and	97
	associated injuries in the interlocking nail group	
Fig (58)	A bar chart demonstrating results of both interlocking nail and MIPPO groups.	105
Fig (59)	A bar chart demonstrating the rate of union in the	107
	MIPPO group.	
Fig (60)	A bar chart demonstrating the rate of union in the	108
	interlocking nail group.	
Fig (61)	A bar chart showing a comparison between results	112
	of both MIPPO and interlocking nail groups	
L		

Fig (62)	Comparison between radiographic results in the	126
	MIPPO and Interlocking nail groups	
F: (62)		107
Fig (63)	Comparison between different studies for	127
	malalignment	
Fig (64)	diagram shows a comparison between different	132
	studies in the need of open bone grafting.	
Fig (65)	a pie chart shows a comparison between different	132
	studies in the need of open bone grafting.	
Fig (66)	Diagram showing a comparison in infection	139
	rate between different studies	
Fig (67)	A pie chart showing a comparison in infection rate	139
	between different studies.	
Fig (68)	Case 1 ILN	116
Fig (69)	Case 2 ILN	117
Fig (70)	Case 3 ILN	118
Fig (71)	Case 1 MIPPO	119
Fig (72)	Case 2 MIPPO	120
Fig (73)	Case 3 MIPPO	121

List Of Tables

Number	Title	Page
1	Specific indication for different technique	62
2	Master table	101
3	Classification system for the results of treatment	104
4	summarizes the outcomes in some of the published series of the MIPPO technique since 1997	124
5	Tagner and Lysholm score	128
6	Grading Tagner and Lysholm score	129

List Of Abbreviations

Abbrevation	Full Term
LC-DCP	Low Contact Dynamic Compression Plate
PC-Fix	Point Contact Fixators
MIPPO	minimally invasive percutaneousplate osteosynthesis
LISS	Less Invasive Stabilization System
DCS	dynamic condylar screw
TARPO	Transarticular Approach and Retrograde Plate Osteosynthesis
LCP	Locked Compression plate
LISS-PLT	Less Invasive Stabilization System – proximal lateral tibia
AP	Anteroposterior
CBC	Complete blood count
RBS	Random Blood Sugar
PC	Prothrombin Concentration
PT	Prothrombin Time
RTA	Road traffic accident
MCA	Motor car accident
FFH	Fall from height
FTG	Fall to the ground
MBA	Motor bike accident
FDS	Fall down stairs
ATLS	acute trauma life support
DVT	Deep Venous Thrombosis

Introduction

It is study to introduce the concept of biological fixation; internal fixation of fractures has evolved with a change of emphasis from mechanical to biological priorities. More flexible fixation should encourage the formation of callus while less precise, indirect reduction will reduce operative trauma, With comparison between the minimal invasive percutaneous plating osteosynthesis and intramedullary nail.

Aim of work

Change of emphasis from mechanical to biological priorities in internal fixation. More flexible fixation should encourage the formation of callus while less precise, indirect reduction will reduce operative trauma.

To compare results obtained from Minimal Invasive Percutaneous Plate Osteosynthesis and Intramedullary Nail in treatment of fracture tibia.