Sonographic Evaluation of Ovarian Reserve in Management of Infertility Thesis

Submitted for fulfillment of master degree in Gynecology and obstetrics

By
Tamer Mohsen Ahmed Elnahas
M.b, B.ch, Cario University

Under supervision of
Prof. Dr. Rawya Ahmed Ezat
Professor of Gynecology and Obesterics
Cairo University

Prof. Dr. Mohamed Momtaz
Professor of Gynecology and Obesterics
Cairo University

Dr. Ahmed Soliman NasrLecturer of Gynecology and Obesterics
Cairo University

Faculty of Medicine Cairo University 2007

{قَالُواْ سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ }

(البقرة ٣٢)

ABSTRACT

THE AIM is to assess the application of ultrasonography and Doppler in the evaluation of ovarian reserve in management of infertility. METHODS: Transvaginal ultrasound and Doppler examination were performed to the selected 30 patients RESULTS: An increase of ovarian volume in PCOS patients and decreased after induction of ovulation, a decrease of AFC and increased after induction, PI and RI of uterine artery increased in PCO and decreased after induction, PI and RI of ovarian artery decreased in PCO and increased after induction, Ovarian stromal blood flow indices were insignificant.CONCLUSION: ultrasonography and Doppler were proved to be important tools for prediction of ovarian reserve

Key words:

(Polycystic ovary disease PCOD/ovarian blood flow/stromal blood flow/uterine blood flow/pulsatility index PI/ resistance index RI ultrasonography, Doppler and ovarian reserve)

Acknowledgement

First of all I would like to thank **Allah** who gave me the power and patience throughout my work.

I would like to thank **Prof. Dr. Rawya Ahmed Ezat**, Head of Gynecology and Obestetrics Department, Cairo University, for her great advice and supervision in this thesis.

I would like to express my gratitude to **Prof. Dr. Mohamed Momtaz**, Professor of Gynecology and Obestetrics, Cairo University.

Special thanks to **Dr. Ossama Azmy**, Assistant professor, Head of Reproductive Heath and Family Medicine Department, National Research Center.

Many thanks to **Dr. Ahmed Soliman Nasr**, Lecturer of Gynecology and Obestetrics, Cairo University, for the efforts he did to complete this study.

I would like to thank my **Professors, Assistant professors, Lecturers, Assistant Lecturers** and my **Colleagues,** in Kasr Al Aini Hospital and in the National Research Center.

I would like also to thank my wife and my son **Yassin** who gave me time and support to do this work.

I would like also to thank my **parents** and my brother **Ahmed** who helped me a lot.

Finally, this work is my present to my family.

Index

T	•	0114	
I - K		of literatur	\mathbf{a}
T-T		or muratur	v.

	1. Introduction	1
	2. Aim of work	4
	3. Folliculogenesis and composition of ovarian reserve	5
	4. Clomiphene citrate challenge test	31
	5. Ultrasonographic assessment of ovarian reserve	39
II-	- Material and Methods	47
II	I- Results	53
IV	7-Discussion	65
V-	English summary	75
VI	I- Conclusion	78
VI	II- References	79
VI	III- Arabic summary	95

List of tables

Table	Title	Page
Table1	Morphometric characteristics of primordial, transitory,	30
	and primary follicles in the adult human ovary.	
Table2	Comparison of treatment outcomes between women	
	with normal and abnormal CCCT	
Table3	Delivery rates for women with a normal CCCT result,	36
	according to their response to hMG.	
Table4	Spontaneous abortion rates for women with normal	37
	and abnormal responses to hMG with a normal CCCT	
	result.	
Table5	Ovarian volume and morphological changes with	40
	different age groups	
Table6	Relationship between total antral follicle count, total	45
	ovarian volume, mean stromal vascularity, fertilization	
	rate, pregnancy rate and female age.	
Table7	Volume of right ovary before and after induction of	52
	ovulation	
Table8	Volume of left ovary before and after induction of	53
	ovulation	
Table9	AFC in right ovary before and after induction of ovulation	54
Table10	O AFC in left ovary before and after induction of ovulation 5	
Table11	leading antral follicle volume in right ovary, before and	57
	after induction of ovulation	

Table12	leading antral follicle volume in left ovary, before and after	58
	induction of ovulation	
Table13	PI of uterine artery before and after induction of ovulation	59
Table14	RI of uterine artery before and after induction of ovulation	60
Table15	PI in Right ovarian artery before and after induction of	61
	ovulation	
Table16	PI in left ovarian artery before and after induction of	61
	ovulation	
Table17	RI in right ovarian artery before and after induction of	62
	ovulation	
Table18	Table (18): RI in left ovarian artery before and after induction	62
	of ovulation	
Table19	ovarian stromal blood flow PI in right ovarian artery, before	63
	and after induction of ovulation	
Table	ovarian stromal blood flow PI in left ovarian artery, before	64
20	and after induction of ovulation	

List Of figure

Figure	Title	Page
Fig 2	Diagram showing steps of oogenesis	9
Fig 3	Chronology of follicle growth during the human	11
	menstrual cycle	
Fig 4	Digram showing characteristics and	12
	gonadotropin responsiveness of early and preovulatory follicle	
Fig 5	Diagram showing stages of Oogenesis	15
Fig 6	Diagram showing LH/FSH surge.	16
Fig 7	Mature Graafian follicle.	18
Fig 8	Diagram showing the role of changes in plasma FSH	19
	concentrations on the initiation of preovulatory	
	follicle development and the selection of a single	
	preovulatory follicle: The threshold theory	
Fig 9	Hormone effector systems in immature and	27
	mature follicles	
Fig 10	IVF delivery rates per oocyte retrieval with respect	34
	to day 3 and day 10 FSH levels on CCCT.	
Fig 11	IVF delivery rates per oocyte retrieval with respect	36
	to day 3 and day 10 FSH levels on CCCT.	
Fig 12	Spontaneous abortion rates for women with	37
	normal and abnormal responses to hMG with a	
F: 10	normal CCCT result.	4.1
Fig 13	Normal ovary in a woman of menstrual age	41
Fig 14	Normal ovary in postmenopausal women	41
Fig 15	Mean ovarian volume (cc) before and after	54
	clomiphene treatment among the study sample.	
Fig 16	Mean antral follicle count (AFC)in the right ovary	55
	before and after clomiphene treatment among the	
D' 15	study sample.	7.5
Fig 17	Mean antral follicle count (AFC) in the left ovary	56
	before and after clomiphene treatment among the	
	study sample	

Fig 18	Scatter diagram showing the correlation between ovarian volume and antral follicle count before clomiphene therapy	57
Fig 19	Scatter diagram showing the correlation between ovarian volume and antral follicle count after clomiphene therapy	57
Fig 20	Mean leading follicle volume (umm)in the right ovary before and after clomiphene treatment among the study sample	58
Fig 21	Mean leading follicle volume (umm)in the left ovary before and after clomiphene treatment among the study sample	59
Fig 22	Mean uterine artery pulsatility index (PI) and resistive index (RI) before and after clomiphene treatment among the study sample.	61
Fig 23	Mean ovarian artery pulsatility index (PI) and resistive index (RI) before and after clomiphene treatment among the study sample	63

Abberviations

Abberviation	Details
IVF	In vitro fertilization
FSH	Follicle stimulating hormone
LH	Lutenizing hormone
CCCT	Clomiphene citrate challenge test
GnRHa	Gonadotopin releasing hormone agonist
GAST	Gonadotopin releasing hormone agonist stimulating test
EFFORT	Exogenous follicle stimulating hormone ovarian reserve test
IGF-1	Insulin growth factor 1
IGFBPs	Insulin growth factor binding protein
HMG	Human menopausal gonadotropins
m RNA	Messenger RNA
VEGF	Vascular endothelial growth factor
cAMP	Cyclyc adenosine monophosphate
ATP	Adenosine triphosphate
HCG	Human chorionic gonadotropin
OHSS	Ovarian hyperstimulation syndrome
CC	Clomiphene citrate
$\mathbf{E_2}$	Estradiole
IUI	Intra uterine insemination
3D	Three dimensions
U/S	Ultrasonography
TVS	Transvaginal sonography
PI	Pulsatility index
RI	Resistance index
PCO	Polycystic ovary
AF	Antral follicle
AFC	Antral follicle count

INTRODUCTION

Delaying the period of life to have children considerably contributes to the proportion of couples with involuntary childlessness (*Mosher and Partt, 1991*). Demographic (wood 1989) and clinical (*Noord-Zaadstra et al., 1991*) studies have shown that a woman experiences her optimal fertility before the age of 30-31 years. Thereafter, fertility gradually decreases with acceleration towards the age of 40 years.

Already at an age of 40-41 years half of the women will have completely lost their capacity for reproduction. It is generally accepted that reproductive ageing is in fact ovarian ageing and is related to the decreasing quantity and quality of the pool of follicles preserved in the ovary (*Tevelde and Pearson*, 2002)

Ovarian reserve is the term that refers to a woman current supply of ova and is associated with the reproductive potential. In general, the greater the number ova, the better the chance for conception and vice versa. The decline in fecundity with female age, long before menopause occurs, is a well-known phenomenon .Ovarian ageing, more than uterine ageing seems to play an important role. The cohort of primordial follicles undergoes steady depletion with age, starting already before birth (*Navot et al.*, 1994).

Determination of ovarian reserve is important before any expensive IVF treatment is undertaken. Identification of both low and high responders prior to treatment may decrease cycle cancellation rate

as well as side effects, such as ovarian hyper stimulation syndrome. Determination of the probability of pregnancy beforehand is important because of its prognostic value which allows physicians to evaluate and counsel patients before IVF stimulation and to optimize stimulation protocols or consider other treatment options such as gamete donation or adoption (*Eldar-Geva et al.*, 2005).

Several methods were used to evaluate the ovarian reserve in women during childbearing period, these tests are:

(A) Static tests:

Generally agreed to be undertaken on day 3 of a natural cycle and commonly are termed "basal tests" and includes:

- Age
- Basal day 3 FSH
- Basal day 3 inhibin –B
- Basal day 3 estradiol
- Anti-mullerian hormone.
- LH and FSH/LH ratio

(B) <u>Ultrasonographic assessment:</u>

- Ovarian volume
- Antral follicle count
- Stromal blood flow

(C) Dynamic tests

They have been performed to assess ovarian reserve after challenge with:

- Clomiphene citrate ⇒ The clomiphene citrate challenge test (CCCT).
- GnRHa ⇒ The GnRH agonist stimulation test(GAST)
- Gonadotropins ⇒ The exogenous FSH ovarian reserve test(EFORT)

Induction of super ovulation for conventional fertility treatment or for assisted reproductive techniques also could be considered a dynamic test of ovarian reserve.

(D) <u>serum progesterone and premature</u> <u>luteinization:</u>

Either in natural or stimulated cycles.

(E) Ovarian biopsy:

However, many authors found no place for this procedure in clinical evaluation of reproductive ageing

AIM OF WORK

The aim of this thesis is to study the combined role of sonographyic assessment and dynamic assessment of ovarian reserve in management of infertility, as we use clomiphene citrate to induce ovulation starting from the 2nd day of the cycle for 5 days and to evaluate its effect by using sonography at the 14th day by measuring

- uterine dimensions
- Ovarian volume
- Antral follicle count
- Volume of leading antral follicle
- Ovarian stromal blood flow indices
- Ovarian vessel blood flow indices
- Uterine vessel blood flow indices

FOLLICULOGENESIS AND COMPOSITION OF OVARIAN RESERVE

Anatomy of the human ovary:

The human ovary is a paired intra-abdominal organ, amygdaloid in shape, whose primary roles are to release, during each menstrual cycle, an egg that is fully competent for fertilization and embryonic development (gametogenic function) and to prepare the accessory reproductive organs for the pregnancy and birth of a healthy baby by producing steroid hormones (endocrine function).

When the mature human ovary is observed in midsagittal section, it consists of an outer zone, the cortex, and an inner zone, the medulla. The cortex is covered by a specialized mesothelium called the surface epithelium; it contains an outer strip of connective tissue, the tunica albuginea, and inner zone that contains the follicles. The resting follicles are located in a relatively a vascular layer in the ovarian cortex beneath the tunica albuginea. In contrast, growing and atretic follicles and involuting corpora lutea are found in the cortical medullary border, which is richly vascularized. Follicles are closely surrounded by a complex and dynamic milieu of ovarian stromal cells and branches of the vasculature and autonomic nervous system. The medulla contains a variable dense- connective tissue that enmeshes stromal cells, blood