Ain Shams University
Faculty of Pharmacy
Department of Pharmacology
and Toxicology

"Potential Protective Effects of Phytoestrogen(s) Against Experimentally-Induced Neurotoxicity"

A Thesis Submitted for the Partial Fulfillment of Requirements for the Degree of Doctor of Philosophy in Pharmaceutical Science (Pharmacology & Toxicology)

By Esther Tharwat Menze Younan

M.Sc. Degree in Pharmaceutical Sciences, Pharmacology and Toxicology (2012) Assistant Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University

Under the supervision of

Professor Ashraf B. Abdel-Naim

Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University

Professor Amani E. Khalifa

Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Seconded as the Strategic Planning Consultant for Children's Cancer Hospital Egypt, 57357

Dr. Mariane G. Tadros

Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University

Dr. Ahmed Esmat Abdelrazek

Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University

Department of Pharmacolgy and Toxicology Faculty of Pharmacy, Ain Shams University 2014.

Acknowledgment

Above all; utmost thanks and glory to Almighty God for the divine intervention in my whole life.

I wish to thank, first and foremost, my Professor Ashraf Bahai Abdel-Naim, Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University for his great support, unwavering guidance, continuous encouragement and generosity in sharing his tremendously valuable expertise.

It is with immense gratitude that I acknowledge the support and help of Professor Amani Emam Khalifa, Professor of Pharmacology and Toxicology seconded as the Strategic Planning Consultant for the Children's Cancer Hospital, Egypt, 57357, for her keen supervision, positive insights and guidance throughout the whole work.

I am heartily thankful to Dr. Mariane George Tadros, Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, for her assistance in the practical experiments, precious advices and inspiration and for saving no effort in helping me.

It is my pleasure to thank Dr. Ahmed Esmat Abdelrazek, Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, to whom I am indebted, for his generous guidance, direct supervision and assistance in the practical experiments.

I would like to thank my friends and colleagues from the department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, for their support and for sharing their knowledge and experiences, especially, Eman Mantawy, Haidy Effat, Christine Nathan, Reem Tarek and Diana Hanna. I also want to thank Dr. Nessma, Department of Pharmacology, National Institute of Research, for her efforts in teaching me ovariectomy.

I wish to thank Professor Adel Bakir, Professor of Pathology, Faculty of Veterinary Medicine, Cairo University, for carrying out the histopathological examination and Mr. Moussa Hussein, National Institute of Cancer, Cairo University, for immunohistochemical staining.

Finally, it is worth mentioning that this thesis would not have been possible without the unwavering emotional and financial support of my family.

INDEX

Topic	Page
Abstract	1
Introduction	1
I-Neurotoxicity	
- Neurotoxins	2
Neurodegeneration	3
Forms of neuronal death	4
 Glutamate receptor excitotoxicity and neuronal death 	6
 Oxidative stress and neurodegeneration 	7
 Inflammation and neurodegeneration 	8
 Gonadal steroids and the nervous system 	9
II-Huntington's disease	
- History	11
Epidemiology	12
- Genetic basis	12
Neuropathology	14
- Clinical course	21
Clinical management	23
III- 3-Nitropropionic acid	25
IV- Startle reflex	29
V-Estrogen and neuroprotection	
- Estrogens receptors	31
 Mechanisms of estrogen neuroprotection 	32
- Pharmacokinetics	39
- Pharmacogenomics	39
The risk of estrogen replacement therapy	40

VI- Genistein	
Genistein as a phytoestrogen	41
- Pharmacological activity	43
- Pharmacokinetics	46
Aim of the Work	47
Materials and Methods	
I- Experimental design	48
II- Animals	52
III-Materials	53
IV-Methods	
 Assessment of body temperature 	66
Assessment of body weight	67
- Behavioral experiments	68
- Histopathological examination	70
Oxidative stress parameters	71
- ATP assay	79
 Acetylcholinesterase activity 	81
 Immunohistochemical detection of iNOS and COX-2 	83
- Prostaglandin E ₂ assay	84
 Western blotting of Bax/Bcl-2 ratio 	87
Results	92
Discussion	141
Summary and conclusion	151
References	156

LIST OF ABBREVIATIONS

μl Microlitersμmol Micromole

3-NPA 3-Nitropropionic acid

A AbsorbanceA% Area percent

AAP 4-Aminoantipyrine

Ab Antibody
ACh Acetylcholine

AChE Acetylcholine esterase
AD Alzheimer's disease

ALS Amyotrophic lateral sclerosis
AMP Adenosine monophosphate

ANOVA Analysis of variance **ATCh** Acetylthiocholine

ATP Adenosine triphosphate

Bax Bcl-2 associated x-protein

BBB Blood brain barrier BCA Bicinchonic acid

BSA Bovine serum albumin
CAG Cytosine-Adenine-Guanine

ChAt Choline acetyl transferase
CNS Central nervous system

COX CyclooxygenaseD1 Dopamine receptor 1D2 Dopamine receptor 2

dB Decibel

DHBS Dichloro-2-hydroxy benzene sulfonic acid

DMSO DimethylsulfoxideDNA Deoxyribonucleic acidDTNB Dithionitrobenzoate

DTT Dithiotheritol

eNOS Endothelial nitric oxide synthase

ER Estrogen receptor

ELISA Enzyme linked immunosorbant assay

ERE Estrogen responsive element
ERT Estrogen replacement therapy

g Gram

GABA Gamma aminobutyric acid

GluR
Glutamate receptor
GPe
Globus pallidus externa
GPi
Globus pallidus interna
GSH
Reduced glutathione
H₂O₂
Hydrogen peroxide
HD
Huntington's disease

Htt Huntingtin protein
IgG Immunoglobulin G

IL Interleukin

HRP

iNOS Inducible nitric oxide synthase

Horse radish peroxidase

ip Intraperitoneal

IR Infra-red
kb Kilo base
kDa Kilo Dalton
kg Kilogram
M Molar

mA Milliampere

MAPK Mitogen activated protein kinase

MDA Malondialdehyde

mgMilligramminMinuteMlMillitermolMole

mRNA Messenger Ribonucleic acid

ms Millisecond

MW Molecular weight

NADPH Nicotinamide adenine dinucleotide phosphate, reduced form

NF-κB Nuclear factor- kappa B

nm Nanometer

NMDA N-methyl-D-aspartate

nmol Nanomole

NO Nitric oxide

NO Nitric oxide radical

NSAIDs Non-steroidal anti-inflammatory drugs

 O_2 Superoxide radical

OD Optic density
OH Hydroxyl radical
ONOO Peroxynitrite radical
PBS Phosphate buffer saline
PD Parkinson's disease

pg Picogram

PGE₂ Prostaglandin E₂

PI3K Phosphatidylinoistol 3-kinase

PVDF Polyvinylidine fluoride

RNS Reactive nitrogenous speciesROS Reactive oxygen species

rpm Round per minute

s Second

s.c. Subcutaneous

SDS Sodium dodecyl sulfate

SERM Selective estrogen receptor modulators

STN Subthalamic nucleous TBA Thiobarbituric acid

TBARS Thiobarbituric acid reactive species

TBST Tris buffered saline tween **TEMED** Tetramethylenediamine

Thal Thalamus

TNF Tumor necrosis factor

v Volt

°A Angstrom °C Celsius

LIST OF DIAGRAMS

Diagram	Title	Page
1	Neurophysiologic changes resulting in disinhibition of thalamus in early HD and inhibition of thalamus in late HD	17
2	Key cellular pathogenic mechanisms in HD	20
3	Mitochondria-mediated neuronal dysfunction in HD	28
4	A simplified model for the genomic action of estrogen	34
5	Indirect action of estrogen via interaction with intracellular signaling pathways	36
6	Schematic diagram representing the possible mechanisms underlying the neuroprotective effect of estradiol	38

LIST OF FIGURES

Figure	Title	Page
i	Chemical structure of 3-nitropropionic acid	25
ii	Chemical structure of genistein, 17 β-estradiol and tamoxifen	42
iii	Proposed targets for beneficial effects of dietary genistein or a high soy diet on human health	45
iv	Startle reflex apparatus	61
v	Locomotor activity detector	62
vi	Step-through passive avoidance apparatus	63
1	Standard calibration curve for MDA	72
2	Standard calibration curve for ATP levels	79
3	Standard calibration curve for PGE ₂	85
4	Effects of genistein and 17β-estradiol on the body temperature of 3-NPA-treated ovariectomized rats	93
5	Effects of genistein and 17β-estradiol on the body weight of 3-NPA-treated ovariectomized rats	96

6	Effects of genistein and 17β-estradiol on the %PPI of 3-NPA-treated ovariectomized rats	99
7	Effects of genistein and 17β-estradiol on locomotor activity of 3-NPA-treated ovariectomized rats	102
8	Effects of genistein and 17β-estradiol on step-through latency of 3-NPA-treated ovariectomized rats	105
9	H and E staining of the striata of treated rats	107
10	H and E staining of the cortices of treated rats	108
11	H and E staining of the hippocampi of treated rats	109
12	Effects of genistein and 17β-estradiol on the striatal, cortical and hippocampal levels of TBARS of 3-NPA-treated ovariectomized rats	112
13	Effects of genistein and 17β-estradiol on the striatal, cortical and hippocampal catalase activities of 3-NPA-treated ovariectomized rats	115
14	Effects of genistein and 17β-estradiol on the striatal, cortical and hippocampal levels of GSH of 3-NPA-treated ovariectomized rats	118
15	Effects of genistein and 17β-estradiol on the striatal, cortical and hippocampal levels of ATP of 3-NPA-treated ovariectomized rats	121

16	Effects of genistein and 17β-estradiol on cortical and hippocampal AChE activity of 3-NPA-treated ovariectomized rats	124
17	Immunohistochemical staining of striatal COX-2-positive cells	126
18	Immunohistochemical staining of cortical COX-2-positive cells	127
19	Immunohistochemical staining of hippocampal COX-2-positive cells	128
20	Immunohistochemical staining of striatal iNOS-positive cells	131
21	Immunohistochemical staining of cortical iNOS-positive cells	132
22	Immunohistochemical staining of hippocampal iNOS-positive cells	133
23	Effects of Genistein and 17β-estradiol on striatal PGE ₂ levels of 3-NPA-treated ovariectomized rats	137
24	Western blot analysis of the striatal Bax/Bcl-2 ratio	139

LIST OF TABLES

Table	Title	Page
1	Effects of Genistein and 17β-estradiol on the body temperature of 3-NPA-treated ovariectomized rats	92
2	Effects of Genistein and 17β-estradiol on the body weight of 3-NPA-treated ovariectomized rats	95
3	Effects of Genistein and 17β-estradiol on the %PPI of 3-NPA-treated ovariectomized rats	98
4	Effects of Genistein and 17β-estradiol on locomotor activity of 3-NPA-treated ovariectomized rats	101
5	Effects of Genistein and 17β-estradiol on step-through latency of 3-NPA-treated ovariectomized rats	104
6	Effects of Genistein and 17β-estradiol on the striatal, cortical and hippocampal levels of TBARS of 3-NPA-treated ovariectomized rats	111
7	Effects of Genistein and 17β-estradiol on the striatal, cortical and hippocampal catalase activities of 3-NPA-treated ovariectomized rats	114
8	Effects of Genistein and 17β-estradiol on the striatal, cortical and hippocampal levels of GSH of 3-NPA-treated ovariectomized rats	117

9	Effects of Genistein and 17β-estradiol on the striatal, cortical and hippocampal levels of ATP of 3-NPA-treated ovariectomized rats	120
10	Effects of Genistein and 17β-estradiol on cortical and hippocampal AChE activity of 3-NPA-treated ovariectomized rats	123
11	Optical density and Area percent of Immunohistochemically stained striatal, cortical and hippocampal COX-2-positive cells	129
12	Optical density and Area percent of Immunohistochemically stained striatal, cortical and hippocampal iNOS-positive cells	134
13	Effects of Genistein and 17β-estradiol on striatal PGE ₂ levels of 3-NPA-treated ovariectomized rats	136

ABSTRACT

Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder characterized by motor, cognitive and psychiatric abnormalities. 3-Nitropropionic acid (3-NPA) is a mitochondrial toxin that produces selective lesions in the brain similar to that of HD. Phytoestrogens have well-established neuroprotective and memory enhancing effects with better side effect profile in comparison to estrogens. This study investigated the potential neuroprotective and memory enhancing effects of genistein (5, 10 and 20 mg/kg), a phytoestrogen, in ovariectomized rats challenged with 3-NPA (20 mg/kg). These potential effects were compared to those of 17β -estradiol. Results showed that systemic administration of 3-NPA for 4 days decreased animals body temperature and weight, significantly decreased % PPI, impaired locomotor activity and decreased retention latencies in the passive avoidance task. It also increased striatal, cortical and hippocampal oxidative stress through increasing lipid peroxidation and decreasing catalase activity and reduced glutathione levels. Moreover, 3-NPA significantly increased acetylcholinesterase activity (AChE), cyclo-oxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions also decreased ATP levels and increased prostaglandin E₂ (PGE₂) production and Bax/Bcl-2 ratio. Pretreatment with genistein and 17β-estradiol maintained animals' temperature and weight, restored % PPI, attenuated locomotor hypoactivity, increased retention latencies in the passive avoidance task. They also improved the oxidative stress profile, increased ATP levels and attenuated 3-NPA-induced increase in AChE activity and COX-2 and iNOS expressions. Genistein also decreased PGE₂ production and Bax/Bcl-2 ratio in the striatum. Overall, the highest genistein dose (20 mg/kg) was the most effective. In conclusion, this study suggests a neuroprotective and memory enhancing effects for genistein in a rat model of HD. These effects might be attributed-at least partly- to its antioxidant, anti-inflammatory, antiapoptotic and cholinesterase inhibitory activities.