



## INFLUENCE OF NANO-CLAY ON THE BEHAVIOR OF RECYCLED AGGREGATE CONCRETE

By

### **Ezzat Gazy Alhamad**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

STRUCTURAL ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

## OF RECYCLED AGGREGATE CONCRETE

By

#### **Ezzat Gazy Alhamad**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

# MASTER OF SCIENCE in STRUCTURAL ENGINEERING

Under the Supervision of

| Prof.Dr. Mohamed M. El-Attar             |
|------------------------------------------|
|                                          |
| Professor of Strength of Materials       |
| Structural Engineering Department        |
| Faculty of Engineering, Cairo University |
|                                          |

Dr. Dina M. Sadek

Associate Professor Building Materials and Quality Control Institute Housing and Building National Research Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

## INFLUENCE OF NANO-CLAY ON THE BEHAVIOR OF RECYCLED AGGREGATE CONCRETE

By

### **Ezzat Gazy Alhamad**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

#### **MASTER OF SCIENCE**

in

#### STRUCTURAL ENGINEERING

| Approved by the Examining Committee                                         |                       |
|-----------------------------------------------------------------------------|-----------------------|
| Prof.Dr. Ahmed M. Ragab                                                     | (Thesis Main Advisor) |
| Prof.Dr. Mohamed M. El-Attar                                                | ( Advisor)            |
| Dr. <b>Dina M. Sadek</b> Housing and Building National Research Center      | ( Advisor)            |
| Prof.Dr. Osama A. Hodhod                                                    | (Internal Examiner)   |
| Prof.Dr. <b>Said A. Taher</b> Housing and Building National Research Center | (External Examiner)   |

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 **Engineer:** Ezzat Gazy Alhamad

**Date of Birth:** 01/01/1988 **Nationality:** Syrian

**E-mail:** eng.ezzat.alhamad@hotmail.com

**Phone:** +201093253661

**Address:** Naser City, Cairo, Egypt

**Registration Date:** 01/03/2016 **Awarding Date:** / / 2018

Degree:Master of ScienceDepartment:Structural EngineeringSupervisors:Prof. Ahmed M. Ragab

Prof. Mohamed M. El-Attar

Dr. Dina M. Sadek

**Examiners:** Prof.Dr. Ahmed M. (Thesis main advisor)

Prof.Dr. Mohamed M. El-Attar (Advisor)
Dr. Dina M. Sadek (Advisor)

Housing and Building National Research Center

Prof.Dr. Osama A. Hodhod (Internal examiner)
Prof.Dr. Said A. Taher (External examiner)

Housing and Building National Research Center

#### **Title of Thesis:**

## INFLUENCE OF NANO-CLAY ON THE BEHAVIOR OF RECYCLED AGGREGATE CONCRETE

**Key Words:** Recycled Aggregate Concrete; Nano-Clay; Mechanical Properties; Physical Properties; Scanning Electron Microscope.

#### **Summary:**

The present work addresses the influence of incorporation of nano-clay on the behavior of concrete containing coarse recycled concrete aggregate (RCA). The experimental work was divided into two phases. The first phase was carried out to select optimum mixes with the highest compressive strength. In this phase, four groups of concrete mixes were prepared. Each group includes of four mixes. In each group, coarse RCA was used to replace 0%-100% of natural coarse aggregate. Nano clay was used at 0, 1.5, 3 and 4.5% by weight of cement. The second phase was carried out to investigate the characteristics of concrete containing RCA and nano-clay. In this phase, five mixes with the highest compressive strength were selected from the first phase. The compressive strength, splitting tensile strength, flexural strength, water absorption and abrasion resistance were determined for the optimum concrete mixes in addition to their microstructure. The results indicated the enhancement in concrete behavior by using of nano-clay while a reduction in concrete performance by using recycled aggregate. So, nano-clay could be used to enhance the performance of concrete containing RCA. The optimum mix was that containing 3% nano-clay and 25% RCA.



#### **ACKNOWLEDGEMENT**

I would like to take this opportunity to express sincere gratitude to my major Professor **Dr. Mohamed Mohsen El-Attar** for his constant and guidance throughout my stay as a Master's student in Cairo University.

My special thanks to **Dr. Dina Mahmoud Sadek** for her contribution towards my research and thesis. She is an admirable teacher and I have learned from her many things that I will take with me into my future work.

I am greatly appreciative of the support was provided by ministry of higher education in my country Syria.

I would like to thank the civil engineering technical staff. In addition, the administrative assistance of the graduate studies office and the civil engineering department.

Finally, I would like to thank my friends and my family who have all been incredibly supportive over the years.

I would not have been able to do all this hard work without you all.

## **DEDICATION**

To my parent, my brothers, my sisters and my friends

## **Table of Contents**

| ACKN   | OWLEDGEMENT                                                                                                                                       | I   |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| DEDIC  | ATION                                                                                                                                             | II  |
|        | E OF CONTENS                                                                                                                                      |     |
|        |                                                                                                                                                   |     |
|        | OF TABLES                                                                                                                                         |     |
| LIST C | OF FIGURES                                                                                                                                        | VII |
| ABSTE  | RACT                                                                                                                                              | XII |
| CHAP   | ΓER 1: INTRODUCTION                                                                                                                               | 1   |
| 1.1.   | GENERAL                                                                                                                                           | 1   |
| 1.1.   |                                                                                                                                                   |     |
| 1.3.   |                                                                                                                                                   |     |
|        |                                                                                                                                                   |     |
| CHAP   | ΓER 2: LITRATURE REVIW                                                                                                                            | 4   |
| 2.1.   | GENERAL                                                                                                                                           | 4   |
| 2.2.   | WASTE CONCRETE                                                                                                                                    |     |
|        | 2.2.1. Source of waste concrete                                                                                                                   | 7   |
|        | 2.2.2. Recycling of waste concrete                                                                                                                |     |
|        | 2.2.2.1 Main types of crushers                                                                                                                    |     |
| 2.3.   | 2.2.2.2 Examples for structural application of RCA                                                                                                |     |
| 2.3.   | PROPERTIES OF RECYCLED CONCRETE AGGREGATE                                                                                                         |     |
|        | <ul><li>2.3.1. Grading of recycled aggregate concrete</li><li>2.3.2. Particles shape and surface texture of recycled aggregate concrete</li></ul> |     |
|        | 2.3.3. Specific gravity and unit weight of recycled aggregate concrete                                                                            |     |
|        | 2.3.4. Water absorption of recycled aggregate concrete                                                                                            |     |
|        | 2.3.5. Los angeles abrasion loss of recycled aggregate concrete                                                                                   |     |
| 2.4.   | PROPERTIES OF RECYCLED AGGREGATE CONCRETE                                                                                                         |     |
| 2.1.   | 2.4.1 Fresh properties                                                                                                                            |     |
|        | 2.4.1.1 Workability.                                                                                                                              |     |
|        | 2.4.1.2 Air content.                                                                                                                              |     |
|        | 2.4.1.3 Fresh unit weight.                                                                                                                        |     |
|        | 2.4.2 Mechanical properties                                                                                                                       |     |
|        | 2.4.2.1 Compressive strength                                                                                                                      |     |
|        | 2.4.2.3 Modulus of elasticity                                                                                                                     |     |
|        | 2.4.2.4 Drying shrinkage                                                                                                                          |     |
|        | 2.4.3 Durability                                                                                                                                  |     |
|        | 2.4.3.1 Freezing and thawing resistance                                                                                                           |     |
|        | 2.4.3.2 Permeability and water absorption                                                                                                         |     |
| 2.5.   | NANO TECHNOLOGY                                                                                                                                   |     |
| 2.9.   | 2.5.1. Techniques synthesis of nanotechnology                                                                                                     |     |
|        | 2.5.2. Application of nano technology                                                                                                             |     |
|        | 2.5.3. Nano technology in the construction sector.                                                                                                |     |

|             | 2.5.4. Types of nanomaterials                              |     |
|-------------|------------------------------------------------------------|-----|
|             | 2.5.4.1. The carbon nanotubes                              |     |
|             | 2.5.4.3. Silicon dioxide nanoparticles (SiO2)              |     |
|             | 2.5.4.4. Zinc oxide nanoparticles (ZnO)                    |     |
|             | 2.5.4.5. Silver nanoparticles (Ag)                         |     |
|             | 2.5.4.6. Aluminum oxide nanoparticles (Al2O3)              |     |
|             | 2.5.4.7. Zirconium oxide nanoparticles (ZrO2)              |     |
| 2.6.        | 2.5.4.8. Wolfram (Tungsten) oxide nanoparticles (WO3)      |     |
| 2.0.        | NANO CLAY                                                  |     |
|             | 2.6.1. Types of nano-clay                                  |     |
|             | 2.6.1.2. Kaolinite                                         |     |
|             | 2.6.1.3. Halloysite nano-clay                              |     |
|             | 2.6.2. Effect of using nano-clay in cement based materials |     |
|             |                                                            |     |
| <b>CHAP</b> | TER 3: EXPERIMENTAL PROGRAM                                | 47  |
|             |                                                            |     |
| 3.1.        | GENERAL                                                    |     |
| 3.2.        | PROPERTIES OF THE UESD MATERIALS                           | 47  |
|             | 3.2.1. Cement                                              | 47  |
|             | 3.2.2. Fine aggregate                                      | 48  |
|             | 3.2.3. Natural coarse aggregate                            | 50  |
|             | 3.2.4. Recycled coarse aggregate                           | 51  |
|             | 3.2.5. Water                                               | 57  |
|             | 3.2.6. Nano-clay.                                          | 58  |
|             | 3.2.7. Chemical admixtures                                 | 61  |
| 3.3.        |                                                            |     |
| 0.0.        | 3.3.1. Mix design                                          |     |
|             | 3.3.2. Mixing, casting and curing                          |     |
| 3.4.        | CONCRETE TESTS.                                            |     |
| 3.4.        | 3.4.1. Slump tests.                                        |     |
|             | 3.4.2. Compressive strength test.                          |     |
|             | 3.4.2. Compressive strength test                           |     |
|             | 3.4.4. Flexural strength test.                             |     |
|             | 3.4.5. Water absorption test.                              |     |
|             | 1                                                          |     |
|             | 3.4.6. Abrasion test                                       |     |
|             | 5.4.7. Scanning electron inicroscope (SEM) test            | / 4 |
| СНАР        | TER 4: RESULTS AND DISCUSSIONS                             | 76  |
|             |                                                            |     |
| 4.1.        | INTRODUCTON                                                | 76  |
| 4.2.        | TESTS RESULTS                                              | 76  |
|             | 4.2.1. The first phase.                                    |     |
|             | 4.2.1.1 Compressive strength.                              |     |
|             | 4.2.2. The second phase                                    |     |
|             | 4.2.2.1. Compressive strength                              |     |
|             | 4.2.2.2. Splitting tensile strength                        | 83  |
|             | 4.2.2.3. Flexural strength.                                |     |
|             | 4.2.2.4. Water absorption test                             |     |
|             | 4.2.2.6. Scanning electron microscope.                     |     |
|             |                                                            |     |

| ER 5: CONCLUSIONS AND RECOMMENDATIONS101                | СНАРТ |
|---------------------------------------------------------|-------|
| GENERAL101                                              | 5.1.  |
| CONCLUSIONS 101                                         |       |
| PRACTICAL RECOMINDATIONS AND SUGGESTED AREAS FOR FUTURE | 5.3.  |
| RESEARCH103                                             |       |
| ENCES                                                   | REFER |

## **List of Tables**

| Гаble 2.1: Generated solid waste in Egypt                                          | 6  |
|------------------------------------------------------------------------------------|----|
| Table 2.2: Compressive strength of concrete                                        | 18 |
| Table 2.3: Splitting tensile and flexural strength of mixes at 28 days             | 22 |
| Table 3.1: Chemical composition of CEM I 42.5N                                     | 48 |
| Table 3.2: Physical and mechanical properties of CEM I 42.5 N                      | 48 |
| Γable 3.3: Physical properties of fine aggregate                                   | 49 |
| Γable 3.4: Grading of fine aggregate                                               | 49 |
| Table 3.5: Properties of natural coarse aggregate                                  | 50 |
| Table 3.6: Grading of natural coarse aggregate                                     | 51 |
| Table 3.7: Properties of recycled coarse aggregate                                 | 53 |
| Table 3.8: Grading of recycled coarse aggregate                                    | 53 |
| Γable 3.9: Chemical analysis of water                                              | 57 |
| Table 3.10: Chemical analysis of Nano-clay using X-ray spectroscopy device-XRF (%) |    |
| Table 3.11: Metal's test of Nano-clay using X-ray diffraction equipment (XRD)      | 58 |
| Table 3.12: Characteristics of chemical admixture                                  | 61 |
| Table 3-13: Proportions of concrete mixes in phase -I (kg/m³)                      | 63 |
| Table 3-14: Description of the selected mixes from the first phase                 | 64 |

## **List of Figures**

| Figure 2.1: Generated solid waste in Egypt6                                                   |
|-----------------------------------------------------------------------------------------------|
| Figure 2.2: Demolition of Azarita building because of structural failures in Egypt8           |
| Figure 2.3: Destruction of buildings in Aleppo city because of the war in Syria8              |
| Figure 2.4: Impact crusher9                                                                   |
| Figure 2.5: Roll crusher                                                                      |
| Figure 2.6: Cone crusher                                                                      |
| Figure 2.7: Mini concrete crushing plant                                                      |
| Figure 2.8: Vilbeler Weg office building, Darmstadt, Germany                                  |
| Figure 2.9: The BRE office building                                                           |
| Figure 2.10: Enterprise park                                                                  |
| Figure 2.11: Shape and surface texture of different fractions of recycled                     |
| Figure 2.12: Development of compressive strength of concrete mixtures                         |
| Figure 2.13: Development of compressive strength of concrete mixtures                         |
| Figure 2.14: Development of compressive strength of concrete mixtures                         |
| Figure 2.15: Variation of compressive strength with nano-silica, metakaolin and recycled      |
| coarse aggregate                                                                              |
| Figure 2.16: Tensile splitting strength of concrete mixtures                                  |
| Figure 2.17: Relative tensile splitting strength of concrete mixtures                         |
| Figure 2.18: Split tensile strength variation with replacement of nano-silica, metakaolin and |
| recycled coarse aggregate                                                                     |
| Figure 2.19: Flexural strength variation with replacement of nano-silica, metakaolin and      |
| recycled coarse aggregate                                                                     |
| Figure 2.20: Modulus of elasticity of concrete at various ages due to the replacement of      |
| coarse NA by coarse RCA                                                                       |
| Figure 2.21: MO of concrete with NA and RCA at different w/c ratios27                         |
| Figure 2.22: Drying shrinkage of NAC and RCAC versus time                                     |
| Figure 2.23: Drying shrinkage of conventional and RCA concrete (CC) versus time29             |

| Figure 2.24: Durability factor estimated from freeze-thaw resistance tests of concrete with        |
|----------------------------------------------------------------------------------------------------|
| replacement amount of NA by coarse RCA                                                             |
| Figure 2.25: Water absorption capacity of concrete versus coarse RCA content3                      |
| Figure 2.26: Sorptivity of concrete containing RCA at 0, 50 and 100 % replacement of coars         |
| NA                                                                                                 |
| Figure 2.27: Chloride diffusion coefficient of conventional concrete and RCAC with variou          |
| cement contents                                                                                    |
| Figure 2.28: Total charge passed in coulombs of concrete mixtures                                  |
| Figure 2.29: The top-down and bottom-up approaches in nanotechnology                               |
| Figure 2.30: Applications of NPs in different industrial areas                                     |
| Figure 2.31: Major impacts of applications of nanotechnology in construction materials3            |
| Figure 2.32: Structure of Na-MMT.                                                                  |
| Figure 2.33: Schematic structure of kaolinite                                                      |
| Figure 2.34: Chemical structure of halloysite                                                      |
| Figure 2.35: Compressive strength of Concrete with and without NC (0 - 1.5 %)4                     |
| Figure 2.36: Split tensile strength of Concrete with and without NC $(0-1.5\%)$ 40                 |
| Figure 3.1: Grading of fine aggregate50                                                            |
| Figure 3.2: Grading of natural coarse aggregate5                                                   |
| Figure 3.3: Preparation of RCA by                                                                  |
| Figure 3.4: Grading of recycled coarse aggregate5                                                  |
| Figure 3.5: Drying sample of natural and recycled coarse aggregate in the oven at 110 $^{\circ}$ G |
| for 24 hours (Absorption test)                                                                     |
| Figure 3.6: Water absorption of aggregate5                                                         |
| Figure 3.7: Elongation test of coarse aggregate5                                                   |
| Figure 3.8: Flakiness test of coarse aggregate56                                                   |
| Figure 3.9: Impact test of coarse aggregate56                                                      |
| Figure 3.10: Abrasion test of coarse aggregate5                                                    |
| Figure 3.11: X-ray diffraction pattern of nano-clay59                                              |
| Figure 3.12: Transmission Electron Microscopy (TEM) images of nano-clay60                          |
| Figure 3.13: Outline of phase I                                                                    |
| Figure 3.14: Outline of phase II                                                                   |

| Figure 3.15: Concrete mixing65                                                              |
|---------------------------------------------------------------------------------------------|
| Figure 3.16: Mixing of Nano-clay with water and chemical admixture in magnetic stirre       |
| (magnetic mixer)6                                                                           |
| Figure 3.17: Concrete specimens after casting in laboratory6                                |
| Figure 3.18: Curing of concrete specimens6                                                  |
| Figure 3.19: Slump cone                                                                     |
| Figure 3.20: Slump test6                                                                    |
| Figure 3.21: compressive test6                                                              |
| Figure 3.22: Concrete cube after testing in compressive                                     |
| Figure 3.23: Splitting tensile strength                                                     |
| Figure 3.24: Flexural strength test                                                         |
| Figure 3.25: Water absorption test                                                          |
| Figure 3.26: Preparation of specimens for abrasion test                                     |
| Figure 3.27: Abrasion test                                                                  |
| Figure 3.28: Preparing the samples for SEM test                                             |
| Figure 3.29: Putting the samples in instrument of SEM7                                      |
| Figure 3.30: Scanning electron microscope instrument                                        |
| Figure 4.1: Effect of recycled concrete aggregate on the compressive strength of concrete a |
| 7 days                                                                                      |
| Figure 4.2: Effect of recycled concrete aggregate on the compressive strength of concrete a |
| 28 days                                                                                     |
| Figure 4.3: Effect of nano-clay on the compressive strength of concrete at 7 days79         |
| Figure 4.4: Effect of nano clay on the compressive strength of concrete at 28 days79        |
| Figure 4.5: Effect of recycled concrete aggregate on the compressive strength of concret    |
| containing 0% nano-clay at 7, 28 and 90 days                                                |
| Figure 4.6: Effect of recycled concrete aggregate on the compressive strength of concret    |
| containing 3% nano-clay at 7, 28 and 90 days                                                |
| Figure 4.7: Effect of nano-clay on the compressive strength of concrete made with natural   |
| aggregate at 7, 28 and 90 days8                                                             |
| Figure 4.8: Effect of nano-clay on the compressive strength of concrete containing 25%      |
| recycled concrete aggregate at 7, 28 and 90 days82                                          |

| Figure 4.9: Effect of recycled concrete aggregate on the 28 days splitting tensile strength of |
|------------------------------------------------------------------------------------------------|
| concrete (0% nano-clay)84                                                                      |
| Figure 4.10: Effect of recycled concrete aggregate on the 28 days splitting tensile strength   |
| of concrete containing 3% nano-clay                                                            |
| Figure 4.11: Effect of nano-clay on the 28 days splitting tensile strength of concrete made    |
| with natural aggregate85                                                                       |
| Figure 4.12: Effect of nano-clay on the 28 days splitting tensile strength of concrete         |
| containing 25% recycled concrete aggregate                                                     |
| Figure 4.13: Effect of recycled concrete aggregate on the 28 days flexural strength of         |
| concrete (0% nano-clay)87                                                                      |
| Figure 4.14: Effect of recycled concrete aggregate on the 28 days flexural strength of         |
| concrete containing 3% nano-clay                                                               |
| Figure 4.15: Effect of nano-clay on the 28 days flexural strength of concrete made with        |
| natural aggregate                                                                              |
| Figure 4.16: Effect of nano-clay on the 28 days flexural strength of concrete containing 25%   |
| recycled concrete aggregate                                                                    |
| Figure 4.17: Effect of recycled concrete aggregate on water absorption of concrete at 28 days  |
| (0% nano-clay)90                                                                               |
| Figure 4.18: Effect of recycled concrete aggregate on water absorption of concrete             |
| containing 3% nano-clay at 28 days90                                                           |
| Figure 4.19: Effect of nano-clay on the water absorption of concrete made with natural         |
| aggregate at 28 days91                                                                         |
| Figure 4.20: Effect of nano-clay on the water absorption of concrete containing 25% recycled   |
| concrete aggregate at 28 days91                                                                |
| Figure 4.21: Effect of recycled concrete aggregate on abrasion resistance of concrete at 28    |
| days (0% nano-clay)93                                                                          |
| Figure 4.22: Effect of recycled concrete aggregate on abrasion resistance of concrete          |
| containing 3% nano-clay at 28 days93                                                           |
| Figure 4.23: Effect of nano-clay on the abrasion resistance of concrete made with natural      |
| aggregate at 28 days94                                                                         |

| Figure 4.24: Effect of nano-clay on the abrasion resistance of concrete containing | 25%  |
|------------------------------------------------------------------------------------|------|
| recycled concrete aggregate at 28 days                                             | 94   |
| Figure 4.25: SEM image of the control mix without RCA and nano-clay                | 96   |
| Figure 4.26: SEM image of concrete mix containing 25% RCA                          | 97   |
| Figure 4.27: SEM image of concrete mix containing 0% RCA and 3% nano-clay          | 98   |
| Figure 4.28: SEM image of concrete mix containing 25% RCA and 3% nano-clay         | 99   |
| Figure 4.29: SEM image of concrete mix containing 100% RCA and 3% nano-clay        | .100 |