The Association of Genetic Variants and Non-Genetic Factors with Efficacy of Clopidogrel in the Egyptian Population

Thesis for partial fulfillment of PhD degree in pharmaceutical sciences (Biochemistry)

Вγ

Basma Mohamed Fouad Abdel Aziz Khalil

Assistant Lecturer of Biochemistry Faculty of Pharmacy Misr International University

Under the supervision of

Prof. Dr. Hala Osman El-Mesallamy

Professor of Biochemistry and Vice Dean of Postgraduate Studies
Faculty of Pharmacy
Ain Shams University

Prof. Dr. Lamiaa Nabil Hammad

Professor and Head of Biochemistry Department Faculty of Pharmacy Misr International University

Dr. Mona Farag Schaalan

Associate Professor of Biochemistry Faculty of Pharmacy Misr International University

Prof. Dr. Walid Abdel Azim El-Hammady

Professor of Cardiology Faculty of Medicine Ain Shams University

Dr. Nadia Mohamed Hamdy

Associate Professor of Biochemistry Faculty of Pharmacy Ain Shams University

Faculty of Pharmacy Ain Shams University 2014

بسم الله الرحمن الرحيم

"سَنُرِيهِمْ آيَاتِنَا فِي الأَفَاقِ وَفِي أَنْفُسِهِمْ حَتَّى يَتَبَيَّنَ لَهُمْ أَنَّهُ الحَقُّ أَوَلَمْ يَكْفِ بِرَبِّكَ حَتَّى يَتَبَيَّنَ لَهُمْ أَنَّهُ الحَقُّ أَوَلَمْ يَكْفِ بِرَبِّكَ أَنَّهُ عَلَى كُلِّ شَيْءٍ شَهِيد" أَنَّهُ عَلَى كُلِّ شَيْءٍ شَهِيد" صدق الله العظيم

سورة فصلت ، الآية ٥٣

ACKNOWLEDGEMENT

First and foremost, Thanks are due to Allah.

I am much honored to have *Prof. Dr. Hala El-Mesallamy*, Vice Dean of Postgraduate Studies, and Professor of Biochemistry, Faculty of Pharmacy, ASU, as my supervisor. She taught me different ways to approach research problems and triggered me to be persistent to accomplish any goal. I would like to thank her for her active supervision, constructive criticism, useful comments, supportive guidance throughout the work and efforts in revising the manuscript. I am indebted to Dr. Hala for her encouragement and enlightening thoughts.

Words cannot express my deep gratitude and sincere appreciation to *Prof. Dr. Lamiaa Hammad*, Professor and Head of Biochemistry Department, Faculty of Pharmacy, MIU, for her continuous support. She has been always there to listen and to give me advice. She has taught me how to have self-confidence, especially when I doubted myself, and brought out the best of me. Without her encouragement, constant guidance and her tender loving care, I could not have finished this dissertation. She has been always there to talk about my ideas, proofread and amend my papers and chapters, and to ask me good questions to help me think throughout my problems. Dr. Lamiaa is and will always be dear friend and mentor. I am indebted to her more than she knows

I would like to extend my cordial appreciation to *Prof. Dr. Walid El-Hammady*, Professor of Cardiology, Faculty of Medicine, ASC, for his generous help, precious guidance, invaluable assistance in selection of patients for the present study, and assistance in collecting the required samples. I will never forget his advice and crucial contribution which made him a backbone of this research.

My deepest thanks to *Dr. Mona Schaalan*, Associate Professor of Biochemistry, Faculty of Pharmacy, MIU, for her continuous support. I am such

indebted for the proposal of the point, her valuable advice and sincere effort to facilitate the difficulties during the progress of this work. I will never forget her advice and crucial contribution which made her a backbone of this research. Her truly scientist intuition has exceptionally inspired and enriched my professional development as a researcher and a scientist I want to be.

Many thanks go in particular to *Dr. Nadia Hamdy*, Associate Professor of Biochemistry, Faculty of Pharmacy, ASU, for her kind supervision and great support until this work has been completed. I am indebted to Dr. Nadia for her encouragement and support.

I would like to express my deepest gratitude to *Prof. Dr. Julie A. Johnson*, Professor and Dean, Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, for her continuous advice, professional guidance, valuable suggestions, tremendous and generous help. Center for Pharmacogenomics made the research lab a wonderful workplace by indulging my ever expanding bookshelf space, computer and equipment needs. I am very much obliged to the kindness and great help of *Lynda Stauffer* at the University of Florida, Center for Pharmacogenomics, Gainesville, Florida, for her laboratory assistance.

I am very grateful to *Prof. Dr. Sherif Khalifa*, Professor & Associate Dean - Academic Affairs, College of Pharmacy, Qatar University, for facilitating the channel to University of Florida which provided this valuable opportunity to me. He deserves a unique appreciation and acknowledgment for offering me this opportunity.

Furthermore, I would like to convey my special thanks to National Heart Institute, Ain Shams specialized Hospital, and Al-Demerdash Hospital, Cairo, Egypt, for their cooperation in samples collection, as well as kind receptiveness.

Also, I am thankful to MIU; it supported me to finalize my mission in the best way. I would like to offer my heartfelt gratitude to MIU professors and colleagues for their vital assistance, motivation and the inspiration they have extended. They have kept me in good spirit, supported my research and teaching activities at the college, and helped me in solving any unsolvable problems concerning postgraduate studies.

Last, but not least, I thank my parents, for giving me life in the first place, educating me, their unconditional support and encouragement to pursue my interests, even when the interests went beyond boundaries of language, field and geography. I would like to thank my husband for his friendship, encouragement, insightful comments, for listening to my complaints and frustrations, and above all, for believing in me. I am also grateful to my sons and sisters who have shared me all the long journey and have been there for me all along the road ahead.

Basma F. Khalil

List of Abbreviations

Abbreviation	Stands for
ABCB1	Adenosine Triphosphate (ATP)-Binding Cassette, Sub-Family B
AC	Adenylate Cyclase
ACC	American College of Cardiology
ACE	Angiotensin Converting Enzyme
ACS	Acute Coronary Syndrome
ACTIVE	Atrial Fibrillation Clopidogrel Trial with Irbesartan for Prevention of Vascular Events
ADP	Adenosine Diphosphate
АНА	American Heart Association
AMI	Acute Myocardial Infarction
APCs	Antigen-Presenting Cells
APS	Adenosine 5' Phosphosulfate
ARBs	Angiotensin Receptor Blockers
AST	Aspartate Aminotransferase
ATP	Adenosine Triphosphate
BAFF	B-cell Activating Factor
BMI	Body Mass Index
BNP	B-Natriuretic Peptide
bp	Base Pair
CABG	Coronary Artery Bypass Grafting
cAMP	Cyclic Adenosine Monophosphate
CD4	Cluster of Differentiation 4
CI	Confidence Interval
CK	Creatine Kinase
CK-MB	Creatine Kinase (Cardiac isoenzymes)
CK-MB ₁ and 2	Creatine Kinase isoforms
COX-1	Cyclo-Oxygenase 1

Abbreviation	Stands for
CPIC	Clinical Pharmacogenetics Implementation Consortium
CRP	C-Reactive Protein
cTn	Cardiac Troponin
cTnI	Cardiac Troponin I
cTnT	Cardiac Troponin T
CVD	Cardiovascular Diseases
CURE	Clopidogrel in Unstable Angina to Prevent Recurrent Events
CYP2C19	Cytochrome P450 2C19
CYP450	Cytochrome P450
DC	Dendritic Cells
DNA	Deoxyribonucleic Acid
dNTP	Deoxyribonucleotide Triphosphate
ECG	Electro-Cardiogram
EM	Extensive Metabolizers
ER	Endoplasmic Reticulum
ESC	European Society of Cardiology
FAST-MI	French Registry of Acute ST-Elevation and Non-ST-Elevation Myocardial Infarction
FDA	Food and Drug Administration
GDF-15	Growth Differentiation Factor-15
GP	Glycoprotein
GPBB	Glycogen Phosphorylase Isoenzyme in Brain and Heart
GWAS	Genome-Wide Association Studies
H-FABP	Heart Fatty Acid Binding Protein
hs-CRP	High Sensitive C-Reactive Protein
hs-Tn	High Sensitivity Tn
IL	Interleukin
IM	Intermediate Metabolizers

Abbreviation Stands for IFN-γ Interferon-Gamma IHD Ischemic heart disease LDH Lactate Dehydrogenase LOF Loss-of-Function Allele MACE Major Adverse Cardiac Events MAF Minor Allele Frequencies **MDRS** MPO-Derived Reactive Species ΜI Myocardial Infarction MMPs Matrix Degrading Metalloproteinases MPO Myeloperoxidase MDR1 Multi-Drug Resistance 1 Protein **NETs** Neutrophil Extracellular Traps NGS Next Generation DNA Sequencing **NLRP** Nucleotide-binding domain and Leucine-Rich repeat containing Proteins **NSTEMI** Non-ST Elevation Myocardial Infarction OPR On-treatment Platelet Reactivity OR Odd Ratio PAI-1 Plasminogen Activator Inhibitor-1 PAR Platelet Protease-Activated Receptor PCI Percutaneous Coronary Interventions **PCR** Polymerase Chain Reaction PD Pharmacodynamics PDE-3 Platelet Phosphodiesterase-3 P-GP Permeability G-protein PK Pharmacokinetics P2Y12 ADP platelets receptor Platelet Inhibition and Patient Outcomes **PLATO** PM Poor Metabolizers **PMN** Polymorphonuclear Leukocytes

Abbassistica	C4 J. f
Abbreviation	Stands for
PPIs	Proton Pump Inhibitors
PPi	Pyrophosphate
RBG	Random Blood Glucose
SNPs	Single Nucleotide Polymorphisms
STEMI	ST Elevation Myocardial Infarction
TAE	Tris/Acetate/EDTA buffer
Th	T helper Lymphocytes
TGF-β	Transforming Growth Factor-βeta
TLR	Toll-Like Receptor
Tn	Troponin
Tn (I, C, T)	Troponin isoforms
TNF	Tumor Necrosis Factor
ТРВ	Thromboxane Receptor
tPA	Tissue-type Plasminogen Activators
Treg	Regulatory T cells
TRITON-TIMI 38	Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition with Prasugrel–Thrombolysis In Myocardial Infarction
TXA2	Thromboxane A2
UA	Unstable Angina
UM	ultrarapid metabolizers
uPA	Urokinase-type Plasminogen Activators
VASP	Vasodilator-Stimulated Phosphoprotein
VASP-P	Phosporylated Vasodilator-Stimulated Phosphoprotein
vWF	von Willebrand Factor
WHO	World Health Organization

Table of Contents

Title	Page No.
List of Figures	i
List of Tables	iii
Introduction and Aim of work	1
Review of Literature	4
Pathogenesis of Acute Coronary Syndrome	10
1. Plaque fissure with systemic inflammation	12
2. Plaque fissure without systemic inflammation	14
3. Plaque erosion	15
4. Functional alterations of coronary circulation	15
Antiplatelet Agents	16
Mechanisms of Action of Antiplatelet Agents	18
1. Inhibition of thromboxane A2 synthesis by cyclo-oxygenase 1 blockade	18
2. Adenosine Diphosphate-induced activation inhibitors (platelet P2Y12 receptor inhibitors)	19
3. Drugs stabilizing the platelet by increasing cAMP availability	20
4. Thrombin platelet protease-activated receptors inhibitors	20
5. Platelet GP IIb/IIIa receptor inhibitors:	20
Clopidogrel	21
Mechanism of Action of Clopidogrel	23
Variability of Clopidogrel Response.	24
Pharmacogenetics and Pharmacogenomics	25
Pharmacogenetics and Clopidogrel	29
1. <i>CYP2C19</i> gene	30
2. ABCB1 gene	34
Non- Genetic Variability and Clopidogrel Response	35

Title	Page No.
Subjects and Methods	40
1.Study design and population	40
2. Sample collection	42
3.DNA isolation and genotyping	42
Methods	42
A. Automated DNA purification from Blood on the QIAcube (Spin Protocol)	42
B. Evaluating the quality of the extracted DNA	46
C Polymerase Chain Reaction (PCR)	46
D. Genotyping analysis	49
1.Genotyping of <i>CYP2C19</i> *2,*3,*6,*8,*10 and *17	49
2.Genotyping of ABCB1	55
Statistical Analysis	57
Results	58
Baseline characteristics of the study population	58
CYP2C19 and ABCB1 genotyping frequencies	58
CYP2C19 polymorphism	61
ABCB1 polymorphism	62
Minor alleles Frequencies in comparison with other population	62
CYP2C19 and ABCB1 genotyping frequencies and outcome	63
Predicted metabolizer phenotypes based on <i>CYP2C19</i> genotype and their average frequencies.	64
Effect of genetic and non-genetic factors on clinical outcome	66
Logistic Regression analysis	66
Discussion	69
Summary and Conclusion	90
References	94
Appendix	115
Arabic Summary	٣_١

List of Figures

Figure No.	Title	Page No.
Figure (1)	Diagnosis of ACS	5
Figure (2)	Schematic diagram of ECG for normal heart versus STEMI and NSTEMI.	6
Figure (3)	Cardiac markers following ACS event	7
Figure (4)	Pathogenetic classification of ACS	12
Figure (5)	Inflammatory pathways predisposing coronary arteries to rupture and thrombosis	13
Figure (6)	Factors affecting platelet activation and aggregation	17
Figure (7)	Factors affecting platelet activation and aggregation, and points of intervention	18
Figure (8)	Mechanism of action of different antiplatelet agents	19
Figure (9)	Receptors and mechanism of action of clopidogrel	23
Figure (10)	Factors affecting clopidogrel response variability	25
Figure (11)	Key components in pharmacogenetics	28
Figure (12)	Genetic targets potentially modulating clopidogrel-induced antiplatelet effects	30
Figure (13)	Why some drugs don't work in some patients?	31
Figure (14)	Study Design	41
Figure (15)	CYP2C19 polymorphisms in the studied population	61
Figure (16)	ABCB1 polymorphisms in the studied population	62
Figure (17)	CYP2C19 and ABCB1 variant alleles and outcomes	64
Figure (18)	Phenotypic distributions of <i>CYP2C19</i> variant among the 2 studied groups	65

i