

"Erosive Effect Of Aspirin On Primary Teeth Enamel In Children With Heart Disease: In vivo and In vitro study"

Thesis Submitted to Faculty of Dentistry,
Ain Shams University

In

Partial Fulfillment of the Requirements for the Master Degree

In

Pediatric Dentistry

Presented By

Bardis Salah Abd Elaziz Hafiz

B.D.S (Faculty of Dental and Oral Medicine-Cairo University-2010)

Internal resident at National Heart Institute

Faculty of Dentistry, Ain Shams University (2018)

Supervisors

Dr. Amr Mahmoud Abd Elaziz

Professor And Head Of pediatric Dentistry and
Dental Public Health Department
Faculty of Dentistry
Ain Shams University

Dr. Gehan Gaber Allam

Lecturer of Pediatric Dentistry and Dental Public Health

Faculty of Dentistry Ain Shams University

Dr. Halla Mohammed Mohammed

Lecturer Department of Pediatric at National
Heart Institute

سورة البقرة الآية: ٣٢

ACKNOWLEDGEMENT

First of all, thanks to Allah whose magnificent help was the main factor in completing this work.

I'm greatly indebted to **Dr. Amr Mahmoud Abd Elaziz**, Professor, Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry - Ain Shams University for his kind help and guidance throughout the whole work.

I wish to express my deepest gratitude and sincere appreciation to Dr. Gehan Gaber Allam, Lecturer of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Ain Shams University, for her close supervision, encouragement and assistance.

Also I wish to express my deepest gratitude and sincere appreciation to Dr. Halla Mohammed Mohammed, Lecturer. Department of Pediatric at National Heart Institute for her close supervision, encouragement and assistance.

I would also like to thank all the members of staff at Ain Shams University who helped me continuously throughout my thesis. I would like to thank national heart institute and in particular our loving dental department for their encouragement, care and suggestions through the course of my research.

DEDICATIONS

Every challenging work needs self-efforts as well as guidance of elders, Especially those who are very close to our heart.

I would like to dedicate my humble thesis to my sweet and loving family. My Mother and Father, whose affection, love, encouragement, prayers day and night and the fact that they always loved me unconditionally and their good examples have taught me to work hard for the things that I want to achieve and allowed my continuous progress. My sisters (Enas, Yasmin, Saly and Habiba) and my brothers (Salah and Mahmoud) as well were an undeniable part of this endless cycle of support and care. My husband (Ahmed) for his support, care, encouragement and love, really without him I would not achieve my success. Finally my son (Youssef) he is the sun of my life, his laugh and innocence can encourage me to overcome any hard

I can't forget my best friends (Hoda and sara) for being a part of this achievement for the care and valuable encouragement they always provided me with.

moments.

Contents

Subjects	Page
List of abbreviations	
List of tables	
List of figures	
• Introduction	1
Review of Literature	3
Aim of the work	25
Patients and Methods	25
• Results	44
• Discussion	56
• Summary	62
• Conclusion	65
• Recommendations	66
• References	67
• Appendices	77
• Arabic Summary	

List of abbreviations

ASA : Acetyl salicylic acid

CCD : Cyanotic congenital heart disease

CHD : Congenital heart disease

CID : Chemical Industrial development

gm : Gram

HD : Heart disease

kg : Kilogram

mg : Milligram

ml : Milliliter

NSAID : Non steroidal-anti-inflammatory drug

RHD : Rheumatic heart disease

List of Figures

No.	<u>Figure</u>	Page
1	Composition of aspirin.	9
<u>2</u>	Scheme for grouping of children.	29
<u>3</u>	Child with RHD.	32
<u>4</u>	Child with CCD.	33
<u>5</u>	Child with acyanotic heart disease.	33
<u>6</u>	Scheme for teeth specimen.	35
<u>7</u>	Olympus SZ-PT Japan stereo-light Microscope.	36
<u>8</u>	Acrylic mold fabrication.	38
9	Wax window fabrication.	39
<u>10</u>	Specimen under vibration.	40
11	A specimen immersed in aspirin solution.	41
<u>12</u>	Vickers micro hardness tester machine.	42
<u>13</u>	Bar chart showing count of the prevalence of dental erosion in all groups.	46
<u>14</u>	Bar chart showing count of the site of dental erosion in all groups.	48
<u>15</u>	Bar chart showing count of the area of surface affected by the erosion in all groups	50
<u>16</u>	Bar chart showing count of the grade of severity of dental erosion in all groups	52
<u>17</u>	Bar chart showing average intergroup comparison of micro hardness	54
<u>18</u>	Bar chart showing average intragroup comparison of micro hardness	55

List of Tables

No.	<u>Table</u>	Page
1	Eccles index for dental erosion of non-industerial origin.	19
<u>2</u>	Smith and knight tooth wear	20
<u>3</u>	Erosion index according to lussi	21
<u>4</u>	O'sullivan erosion index	22
<u>5</u>	Number of cases in each group	25
<u>6</u>	Materials, compositions and manufacturers.	27
<u>7</u>	O'Sullivan index.	31
8	Frequencies (n), Percentages (%) for prevalence of dental erosion in all groups	45
9	Frequencies (n), Percentages (%) for the site of dental erosion in all groups	47
<u>10</u>	Frequencies (n), Percentages (%) for the area of surface affected by the erosion in all groups	49
11	Frequencies (n), Percentages (%) for the grade of severity of dental erosion in all groups	51
<u>12</u>	Mean, Standard deviation (SD) values for Inter and intragroup comparison of microhardness before and after acidic treatment	53

INTRODUCTION

Heart disease is one of the most common developmental abnormalities among children, occurring in approximately 8 to 10 in 1,000 births. (1)

Heart diseases observed in children and adolescents are mainly congenital heart disease and acquired heart disease. (1)

Many studies showed that, children with heart disease have higher enamel hypoplasia and caries prevalence than normal children, and that could be due to many reasons such as their attitude and knowledge toward oral hygiene measures, sugary diet and medications that could increase their susceptibility to caries and acidic drugs that cause erosion. (2)

In children, dental erosion become a major problem in past years, recent studies showed that the prevalence of dental erosion is increasing. (3)

Studies have reported prevalence rates of dental erosion ranging from 13% to 75% among 12-year-old children. (4)

The frequent use of acidic medications such as aspirin which is used as anticoagulant in children with heart diseases and come in direct contact with teeth is identified as an extrinsic etiologic factor in dental erosion, not only for adults but also for children. ^(5,6)

ASPOCID 75 mg chewing tablets is the usual drug used in children with heart disease, this medicine is available in Egyptian markets and accessible by the public. Each tablet of ASPOCID contains 75 mg acetylsalicylic acid and its pH=3.

Children with heart diseases take aspirin in chewable tablets which comes in direct contact with their teeth especially occlusal surfaces and that increase their susceptibility to dental erosion, usual doses are 75 - 100 mg/kg/day divided on 4 doses for 2- 6 weeks to treat inflammation in children with rheumatic heart disease (RHD) and 5 mg/kg/day in single dose daily for life long to act as antiplatelet in children with congenital heart disease (CHD). (2)

This study was conducted to compare the prevalence of dental erosion in different groups of children with heart diseases and to evaluate the effect of chewing aspirin on the micro hardness of primary teeth and comparing it with the effect of soluble form of aspirin.

REVIEW OF LITERATURE

According to World Heart Foundation cardiovascular disease in children and youth is divided into Congenital Heart Disease and Acquired Heart Disease. (7)

Congenital heart Disease (CHD) is divided into two main groups: Cyanotic Heart Disease (CCD) and Acyanotic Heart Disease depending on whether the child has the potential to turn bluish in color ⁽⁷⁾.

Acquired Heart Disease is divided into Rheumatic Heart Disease (RHD) and Kawasaki Disease. (7)

Congenital heart disease (CHD).

Congenital heart disease is the type of heart disease that a child is born with, it is a defect, or abnormality of the heart or blood vessels near the heart, and not a disease, so many people use the term "congenital heart defect".⁽⁸⁾.

The majority of children born today with CHD survive and with proper treatment are able to lead a normal or near-normal life. Some kinds of CHD are mild and may not be diagnosed in infancy. Other types of CHD are severe and will be diagnosed soon after birth. Some would also be diagnosed in prenatal screening ⁽⁹⁾.

Acquired heart disease

Acquired heart disease, this type of heart disease is not present at birth. Two major types of acquired heart disease in children are. (10, 11)

- Rheumatic heart disease (RHD)
- Kawasaki disease.

Rheumatic heart disease

RHD is the most common acquired heart disease in many countries of the world, especially in developing countries. It is a condition where the heart muscle and heart valves are damaged due to rheumatic fever. (12)

The global burden of disease caused by rheumatic fever and RHD currently falls disproportionately on children and young adults living in low-income countries and is responsible for about 233,000 deaths annually. At least 15.6 million people are estimated to be currently affected by RHD with a significant number of them requiring repeated hospitalization and, often unaffordable, heart surgery in the next five to 20 years. The worst affected areas are sub-Saharan Africa, south-central Asia, the Pacific and indigenous populations of Australia and New Zealand. Up to 1 per cent of all schoolchildren in Africa, Asia, the Eastern Mediterranean region, and Latin America show signs of the disease. (1)

Rheumatic fever is caused by streptococcal bacteria, and usually begins as a consequence of strep throat in children that were undiagnosed or were not treated or undertreated. (13)

Infection with this organism results in a diffuse inflammatory disease of the heart, joints, brain, blood vessels and subcutaneous tissue. Carditis is not seen at the time of the streptococcal infection and appears only after a latent period of about three weeks. This serves as evidence against the direct role of streptococcal products in the pathogenesis of rheumatic fever. This latent period parallels the time required for development of an immune response. (14)

The study done by **Abraham (1991)** found that , The molecular mimicry between certain parts of the streptococcus and tissues of the host

may lead to a cross-reactive immunity, in which the immune system produces an antibody response to various components of the streptococcal organism, as well as to certain tissues of the patient, particularly the heart. Immunological hyper-responsiveness in some patients, together with disturbed helper and suppressor T-cell function, leads to a complex immune system disturbance, which results in acute Rheumatic fever and consequent cardiac damage. (15)

More recently **Yegin** (**1997**) found that, the pathogenic role of inflammatory cytokines in Rheumatic fever in the form of tumor necrosis factor (TNF)-alpha, interleukin (IL)- 8 and IL-6 has been described .Substantial evidence pointing to the inflammatory nature of the disease has resulted in use of anti-inflammatory agents such as corticosteroids and aspirin to treat the disease. (16)

Kawasaki disease

Kawasaki disease is characterized by fever, rash, swollen hands and feet, bloodshot eyes, swollen lymph nodes, a strawberry appearance to the tongue, and an acute inflammation of the blood vessels, especially the coronary arteries⁽¹⁾

The cause is unknown but may be due to some kind of infectious agent, it occurs in young children less than 5 years old, and occurs more in boys than in girls. (1, 11)

Kawasaki disease is most common in Japan, but has been seen in virtually every country in the world and is the leading cause of acquired heart disease among children in developed countries. In some children, especially those who are undiagnosed or untreated or not treated soon enough, serious heart damage can occur. (1, 11)

Management of heart diseases in children

Congenital heart diseases

Congenital heart defect may have no long-term effect on child's health — in some instances, such defects can safely go untreated. Certain defects, such as small holes, may even correct themselves as the child ages. (17, 18)

Some heart defects, however, are serious and require treatment soon after they're found. Depending on the type of heart defect, congenital heart defects could be treated with. (17, 18)

- Procedures using catheterization. Some children and adults now have their congenital heart defects repaired using catheterization techniques, which allow the repair to be done without surgically opening the chest and heart. Catheter procedures can often be used to fix holes or areas of narrowing. (17,18)
- Open-heart surgery. Depending on the child's condition, he or she may need surgery to repair the defect. Many congenital heart defects are corrected using open-heart surgery. In open-heart surgery, the chest has to be opened. (17,18)

A study done in **U..K** (2004) to measure the survival rate after surgery or therapeutic catheterization for congenital heart disease in children in the United Kingdom was done by collecting data since April 2000 from all 13 UK tertiary centers. Altogether 3666 surgical procedures and 1828 therapeutic catheterizations were performed, central tracking of mortality identified 469 deaths, 194 deaths within 30 days. For surgery overall survival at 30 days was 94.9% falling to 91.2% at one year, for therapeutic