Detection of Silent Myocardial Ischemia In Asymptomatic Diabetic Patients

Thesis
Submitted in partial fulfillment for the requirement of M.Sc degree in Cardiology

Walid Mohamad Sabry El –Tahlawy M.B.B.CH.

Supervised by

Prof. Dr. Salah El-Din H. Demerdash

Professor of Cardiology Faculty of Medicine -Ain Shams University

Dr. Mona Mostafa Ryan

Asst. Prof of Cardiology Faculty of Medicine -Ain Shamas University

Dr. Mona Mohamad Abdel Salam

Lecture of Internal Medicine & Endocrinology Faculty of Medicine -Ain Shams University

> Faculty of Medicine Cardiology Department Ain Shams University

Detection of Silent Myocardial Ischemia in Asymptomatic Diabetic Patients

By:

Walid Mohamad Sabry El –Tahlawy

ABSTRACT

Given the elevated risk of cardiovascular events and the higher prevalence of silent ischemia of coronary artery disease in diabetic patients.

OBJECTIVE: To assess the incidence and risk factors of silent myocardial ischemia in asymptomatic patients with type ⁷ diabetes.

PATEINT AND METHODS: r patients with type r diabetes, aged r o- r years, with no known or suspected coronary artery disease, were assigned to stress-rest technetium- q m sestamibi SPECT myocardial perfusion imaging.

RESULTS: Thirty three $(\footnotesize{"\footnotesize{"}})$ of screened patients had perfusion defects suggestive of ischemia. These patients were older with larger duration of uncontrolled diabetes mellitus. Microalbuminuria $(\footnotesize{'})$ was prevalent among patients with silent ischemia. These patients had exercise induced symptoms $(\footnotesize{'})$ and ECG changes $(\footnotesize{'})$ suggestive of ischemia. The risk for silent myocardial ischemia is increased with advanced age, longer duration of diabetes mellitus, as well as smoking and positive family history of IHD. Patients with uncontrolled diabetes mellitus and/or with microalbuminemia are at increased risk for myocardial ischemia. The development of symptoms or the presence of ECG changes during stress test in asymptomatic diabetic patients should warrant a deeper and specific testing for CAD. Male and female with type II diabetes mellitus are under comparable risk for CAD.

CONCLUSION: In light of the results of the present study we concluded that: Silent myocardial ischemia was found in "\",\"\", of diabetic patients. The risk for silent myocardial ischemia is increased with advanced age, longer duration of diabetes mellitus, as well as smoking and positive family history of IHD. Patients with uncontrolled diabetes mellitus and/or with microalbuminemia are at increased risk for myocardial ischemia. The development of symptoms or the presence of ECG changes during stress test in asymptomatic diabetic patients should warrant a deeper and specific testing for CAD. Male and female with type II diabetes mellitus are under comparable risk for CAD.

CONTENTS

Acknowledge	(
List of Abbreviations	(
List of tables	(
List of figures	(
Introduction	(
Aim of the work	(
Review of literature	
Macrovascular complications of DM	(
Silent myocardial ischemia	(
Myocardial perfusion imaging	(
Patients and Methods	(
Results	(
Discussion	(
Conclusion and recommendations	(
Summary	(
References	(
Arabic summary	(

LIST OF ABBERVIATIONS

CAD	coronary artery disease
SMI	silent myocardial ischemia
MPI	myocardial perfusion scan
SPECT	Single-photon Emission Computer Tomography.
PPAR	peroxisome proliferator-activated receptor
AGEP	advanced glycation end products.
CRP	C-reactive protein.
PAI-1	plasminogen activator inhibitor-1.
SAA	serum amyloid A protein.
TF	tissue factor.
TPA	tissue-type plasminogen activator.
NF-kappa-B	nuclear factor-kappa-B
HDL	high-density lipoprotein
LDL	low-density lipoprotein
cGMP	cyclic guanosine monophosphate
cAMP	cyclic adenosine monophosphate
TNF-alpha	Tumor Necrosis Factor-alpha
VCAM-1	vascular cell adhesion molecule-1
IL-1	Interleukin-6
ACS	Acute Coronary Syndrome
STEMI	ST-segment elevation myocardial infarction
NSTEMI	non-ST-segment elevation myocardial infarction
۹۹mTc	Technetium-99m
CMR	cardiac magnetic resonance
MRA	magnetic resonance angiography
MRI	magnetic resonance Imaging
rtPA	Tissue plasminogine activator
PAD	Peripheral arterial disease
PVD	peripheral vascular disease
CHD	coronary heart disease
ED	erectile dysfunction
ETT	exercise treadmill test
CAC	coronary artery calcification
EBCT	electron beam computed tomography
PTCA	Percutaneous Coronary Angiography
PCI	Percutaneous Coronary Intervension
LAD	Left Anterior Descending
MPI	Myocardial Perfusion Imaging
LAO	left anterior oblique
RAO	Right anterior oblique
PET	Positron emission tomography
BATO	Boronic acid adducts of technetium dioxime
MET	Metabolic equivalents
SBP	Systolic Blood Pressure
AF	Atial fibrillation
SVT	Supraventricular tachycardia
OADs	Oral Anti Diabetics
IHD	Ischemic heart disease

LIST OF TABLES

NO	TABLE	PAGE
١	ECG Findings for the Diagnosis of Acute	١٨
	Coronary Syndrome.	1 🔨
۲	Characteristics of Serum Cardiac Markers	
	for the Diagnosis of Acute Myocardial	19
	Infarction.	
٣	Risk Assessment Tool for Estimating Your	٤٣
	ACC/AHA Guideline Summary: Coronary	
٤	artery bypass graft surgery (CABG) in	<i>2</i>
	patients with asymptomatic ischemia or	٤٨
	mild angina.	
٥	Comparison of thallium-201 and	00
	technetium-99m	
٦	Characteristics of various perfusion agents	00
٧	Modalities for Stress Testing	٥٦
٨	Treadmill exercise testing protocols	09
٩	Demographic data of the patient included	٧٥
	in the study	
١.	Summaries the lab investigation of the	٧٦
	study group	, •
11	the data of the stress test	YY
١٢	Shows the demographic data of the	V 2
	two subgroups	٧٩
١٣	shows laboratory investigation of the	
	two subgroups	۸.
١٤	Shows stress ECG data of the	
		٨١
	subgroups.	731

LIST OF FIGURES

NO	FIGURE	PAGE
١	Events during Atherogenesis	11
۲	Atherosclerotic Clinical Events	18
٣	Reciprocal interplay between inflammation and diabetes mellitus in the pathogenesis of atherothrombosis	10
٤	Normal SPECT study	7
٥	Guidelines: choosing a cardiac stress test	7.7
٦	Pie chart showing Incidence of SMI in type Y diabetes mellitus.	٧٨
٧	Showing insignificant ECG changes of patient No (7)	۸١
٨	Showing normal myocardial perfusion imaging Of patients No (7)	٨١
٩	Showing significant ECG changes of patient No ۲۲.	٨٢
١.	Showing moderate size reversible perfusion defect involving lateral, infrolateral walls (LCX territory) of patients No ۲۲.	۸۲

Acknowledgement

First and forever I feel always indebted to ALLAH, the most Gracious, and the most Merciful.

I am greatly thankfull to my parents for their support and encouragement.

I would like express my gratitude **Prof. Dr. Salah El-Din H. Demerdash** (Professor of Cardiology, Faculty of Medicine -Ain Shams University) who initiate and assign this work and for his faithful supervision.

Also many many thanks goes to my kind supervisor **Dr.Mona Mostafa Ryan.** (Asst.Prof of Cardiology, Faculty of Medicine -Ain Shams University) for her keen advice and sincere guidance.

Thanks is not enough to **Dr.Mona Mohamad Abdel Salam**. (Lecturer of internal medicine & endocrinology, Faculty of Medicine-Ain Shams University) who really gave her effort to support this thesis.

I would like to thank **Dr.Abdel Maksoud Ahmad** (Asst.Prof of Cardiology, Faculty of Medicine, Al-Azhar University) and **Dr.Khaled El Sayed El Hadidi** (Asst.Prof of Internal Medicine, Faculty of Medicine, Beni Suief University) for their support and helping to finish this thesis.

Walid El-Tahlawy

Introduction

ardiovascular disease (CVD) is the leading cause of death and disability in developed nations and is increasing rapidly in the developing world. By the year Y.Y., it is estimated that CVD will surpass infectious diseases as the world's leading cause of death and disability. Diabetes is one of the main risk factors for coronary atherosclerosis since it accelerates its progression, causes endothelial dysfunction and increases platelets activity. Diabetes eliminates the protection associated with female sex against CAD (1). The pathological relationship between the disease of large and medium blood vessels and diabetes has been well established. It is known that insulin resistance and hyperinsulinism are the primary factors involved in the pathogenesis of macroangiopathy. Other hyperglycemia, risk factors include dyslipidemia, hypertension and obesity (1). Type Y occurs in individuals who have some sort of insulin resistance but still maintain their ability to secrete insulin so do not develop ketosis and no obligatory need for exogenous insulin therapy like insulin dependent diabetes mellitus type \ to keep life \(^{\text{o}}\).

Patients é diabetes can also have complications affecting various organs due to microvascular disorders (retinopathy, cataract, nephropathy, neuropathy, and atherosclerosis) however; they evolve more slowly and depend on the metabolic control of the disease (5). The diabetic patients who present to ED with symptoms suggestive of cute coronary syndrome (ACS) are at higher risk group than non diabetic and more often have abnormal myocardial perfusion image (6). Silent myocardial ischemia occurs in greater than one in five asymptomatic patients with type 7 diabetes (5).

Nuclear cardiology has an integral role in non invasive detection of coronary artery disease, assessment of myocardial viability and risk stratification. It imparts improved sensitivity and specificity over standard exercise stress testing. Myocardial perfusion imaging is used widely in the evaluation of patients with known or suspected CAD. The extensive clinical use of MPI for detection of CAD has resulted largely from studies demonstrating improved diagnostic sensitivity and specificity of exercise MPI compared to exercise ECG (*). Radionucleotide techniques that assess regional myocardial perfusion provide useful information in the detection and evaluation of CAD and in the assessment of therapies aimed at limiting the degree of ischemia. It is critical to measure perfusion both at rest and with exercise since perfusion may be normal at rest even in patients with severs CAD (*).

Aim of the work

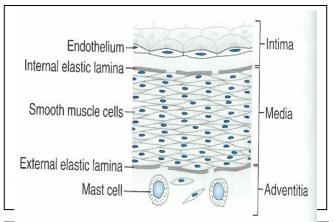
The aim of this study is to detect silent myocardial ischemia using SPECT in asymptomatic patients with type \(^{\gamma}\) Diabetes Mellitus.

Chapter 1

MACROVASCULAR COMPLICATIONS OF DIABETES MELLITUS

iabetes mellitus (DM), mainly type \(\) diabetes (\(\frac{9}{\cdot \cdot \)}, \) of diabetic patients), affects approximately \(\cdot \cdot \) million people worldwide, including \(\frac{1}{\cdot \cdot \cdot \)}, \) million in the UK. A \(\frac{1}{\cdot \cdot \cdot \)}, \) increase in incidence is predicted by \(\frac{1}{\cdot \cdot \cdot \cdot \cdot \), \(\dec \cdot \

Diabetes mellitus is known to be associated with a high risk of developing vascular complications which can lead to premature death and/or disability mainly by increasing the risk of myocardial infarction, stroke and peripheral vascular disease Patients with DM are two to four times more likely to develop cardiovascular disease than those in the general population and have a ^Y to ^o time's greater risk of dying from these diseases (**).


In addition to being a risk factor for cardiovascular disease in its own right, DM is associated with a higher prevalence of other risk factors such as hypertension and dyslipidaemia, which, in turn, have a more harmful effect in the presence of diabetes. Not only these complications debilitating to the patient, but they are accompanied by a significant economic burden to the patient, family members, and the nation's health care budget (17).

Macrovascular complications in diabetic patients were more common among males, increased with age, were more common among hypertensive patients and its prevalence increased steadily with duration of DM. Clearly, such data are important, given that macrovascular complications account for approximately °•½ of all deaths among DM patients in the industrialized countries (17).

Indeed, at present it is generally upheld that patients with DM should be treated as though they already have heart disease.

The central pathological mechanism in macrovascular disease is the process of atherosclerosis. which leads to narrowing of arterial walls throughout the body. Atherosclerosis is thought to result from chronic inflammation and injury to the arterial wall the peripheral vascular coronary system.

In response to endothelial iniurv and inflammation. oxidized lipids from LDL particles accumulate in the endothelial wall of arteries (\frac{1}{2}). (Fig; 1)

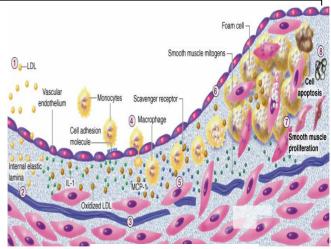


FIG-1; EVENTS DURING ATHEROGENESIS

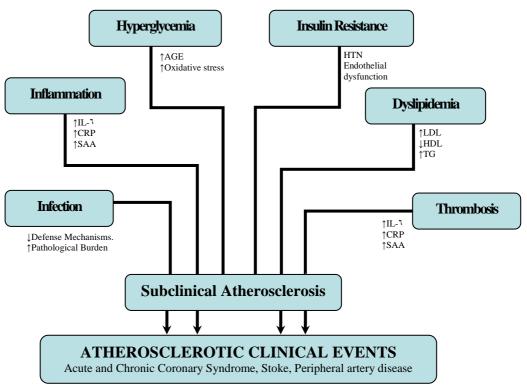
Angiotensin II may promote the oxidation of such particles. Monocytes then infiltrate the arterial wall and differentiate into macrophages, which accumulate oxidized lipids to form foam cells. Once formed, foam cells stimulate macrophage proliferation and attraction of T-lymphocytes.T-lymphocytes, in turn, induce smooth muscle proliferation in the arterial walls and collagen accumulation (15).

In addition to atheroma formation, there is strong evidence of increased platelet adhesion and hypercoagulability in type 7 diabetes. Impaired nitric oxide generation and increased free radical formation in platelets, as well as altered calcium regulation, may promote platelet aggregation (15).

Pathogenesis of Atherothrombosis in DM (Fig; 2):

The pathophysiologic process of atherosclerosis has been schematically summarized in several steps, each of them characterized by significant involvement of humoral and cellular inflammatory elements (1-2).

Genetic abnormality:


Several genetic abnormalities in glycemic metabolism have been associated with the development of diabetes, diabetic complications, or aspects of the dysmetabolic syndrome. All of these derangements could be also involved in atherogenesis. Transcription factors, such as peroxisome proliferator-activated receptor (PPAR)-alpha and -gamma, are now being intensively studied. Whereas PPAR-alpha primarily stimulates the betaoxidative degradation of fatty acids, PPAR-gamma promotes lipid storage by regulating adipocyte differentiation. (PPAR)alpha is the molecular target of lipid-lowering drugs such as fibrates, and PPAR-gamma interacts with insulin-sensitizer drugs such as thiazolidinediones, and they may significantly modulate atherogenicity and inflammation. In particular, mutations in the PPAR-gamma gene have recently been shown to be associated with diabetes, glucose intolerance, and hypertension (17).

Dyslipidemic abnormalities:

Diabetics usually show decreased high-density lipoprotein (HDL) cholesterol levels and increased low-density lipoprotein (LDL) cholesterol and triglyceride levels. Diabetes is most often associated with smaller, denser LDL that is more susceptible to oxidation and thus has greater atherogenicity (1.9). Even if diabetic patients with good glycemic control may have LDL levels similar to or slightly lower than those of nondiabetic individuals, fasting and postprandial levels of triglyceride-rich lipoproteins, especially very-low-density lipoprotein, are higher and those of HDL are lower than those of nondiabetics (1.7).

Finally, Several clinical studies have shown the benefit of lipid-lowering strategies in diabetics, even in cases of modestly

increased or normal cholesterol levels, and these benefits are often greater than those found in nondiabetic patients (1⁽¹⁾).

Fig(*): The pathogenetic mechanisms involved in the initiation of subclinical atherosclerosis and progression to atherosclerotic clinical events in diabetic patients include infection, inflammation, hyperglycemia, insulin resistance, dyslipidemia, and thrombosis. AGE = advanced glycation end products; CRP = C-reactive protein; HDL = high-density lipoprotein; HTN = hypertension; IL-1 = interleukin-1; LDL = low-density lipoprotein; PAI-1 = plasminogen activator inhibitor-1; SAA = serum amyloid A protein; TF = tissue factor; TG = triglycerides; tPA = tissue-type plasminogen activator

Oxidative stress

Diabetics have decreased antioxidant enzyme activity and increased oxidative burden (1,2), and hyperglycemia increases the production of reactive oxygen species. These may shift the oxidant-antioxidant balance toward nonenzymatic oxidation of lipoproteins, thus contributing to atherogenic processes. It has also been hypothesized that reactive carbonyl groups may overwhelm the antioxidant mechanism of diabetic patients, leaving them unprotected to common oxidative stressors such as smoking (1,5).