Recent Advances in Acute Chest Syndrome in Sickle Cell Disease

Essay

Submitted For Partial Fullfillment Of Master Degree in Anesthesiology

Ву

Omar Sayed Farghaly

M . B . B Ch . Faculty Of Medicine Fayoum University

Supervised by

Professor Doctor / Azza Mohammed Shafeek Abdelmageed

Professor Of Anesthesia and Intensive Care-Faculty Of Medicine- Ain Shams University

Doctor / Adel Mohammed Alansary

Assistant Professor Of Anesthesia And Intensive Care-Faculty Of Medicine- Ain Shams University

Doctor / Manal Mohammed Kamal

Lecturer Of Anesthesia And Intensive Care-Faculty Of Medicine- Ain Shams University

Faculty Of Medicine- Ain Shams University

2011

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to Prof. Azza Mohammed Shafeek Abdelmageed, Professor of Anesthesiology and Intensive Care for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to Dr. Adel Mohammed Alansary, Assistant Professor of Anesthesiology and Intensive Care for his sincere efforts and fruitful encouragement.

I am deeply thankful to Dr. Manal Mohammed Kamal, Lecturer of Anesthesiology and Intensive Care for her great help, outstanding support, active participation and guidance.

Omar Sayed Farghaly

List of Contents

Title	Page No.
List of Figures	I
List of Tables	
List of Abbreviations	
Introduction	1
Aim of the Work	2
Pathophysiology of Sickle Cell Disease	3
Role Of Nitric Oxide In Sickle Cell Disease	17
Clinical Features Of Sickle Cell Disease	25
Acute Chest Syndrome	46
Anesthetic Management of Sickle Cell Disease	60
Intraoperative Management of Sickle Cell Disea	se73
Post Operative Care	88
References	105
Summary	121
Arabic summary	

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	Sickle cell dactylitis (hand-foot syndrome)	27
Fig. (2):	Chest radiograph demonstrating multilobar disease in a patient with acute chest syndrome.	55

List of Tables

Table No.	Title	Page No.
Table (1):	Causes of sickle cell disease	16
Table (2):	Causes of Acute Chest Syndrome	47
Table (3):	Clinical Presentation of Acute Chest Syndrome	53
Table (4):	Diagnostic Testing in Acute Chest Syndrome .	54
Table (5):	Clinical Indications for RBC Transfusion in A and Children with SCD	

List of Abbreviations

ACS Acute Chest Syndrome.

ANF Avascular necrosis of head of femur
ASSC Acute Splenic Sequestration Crisis.

ATP Adenosine Tri Phosphate.

BNP Biomarker pro-brain natriuretic peptide

Ca⁺⁺ Calcium

CSSCD The Cooperative Study of Sickle Cell Disease

DNA Deoxyribonucleic acid **DPG** Diphosphoglyceraie

EDRF Endothelium derived relaxing factor

ENOS Endothelium NOS

EPO Erythropoietin

ET-1 Endothelin-1

FDA Food and Drug Administration
G6PD Glucose 6 phosphate dehydrogenase

Glu Glutamic acid
Hb A Adult hemoglobin
Hb C Hemoglobin C
Hb F Fetal hemoglobin
Hb S Sickle hemoglobin
Hemoglobin

HBAs Heterozygous type of sickle cell disease (sickle cell trait)

Hbss Homozygous type of sickle cell disease (sickle cell anemia)

His Histidine

HJB Howell-Jolly bodies

HPLC High-performance liquid chromatographyHSCT Hematopoietic stem cell transplantation

Hu Hydroxyurea

IEF Iso electric focusing

INOS Inducible NOS

Kb kilo bases

MCH Main Corpuscular Hemoglobin

MCHC Main Corpuscular Hemoglobin Concentration

MCV Main Corpuscular Volume

Mg⁺⁺ Magnesium

MgSo4 Magnesium sulphate

NAD+ Nicotinamide adenine dinucleotide oxidized form NADH Nicotinamide adenine dinucleotide reduced form

NO Nitric oxide

NOS Nitric oxide synthetase

OSA Obstructive sleep apnea

PAH Pulmonary artery hypertensionPCR Polymerese Chain Reaction

RNA Ribonucleic acid

SCDSickle cell diseaseSCDSickle cell Disease

SO2 Oxygen saturation

TCD Transcranial DopplerTIA Transient ischemic attack

Tyr Tyrosin

UTRs Un translated Region

Val Valin

VCAM-1 Vascular Cell Adhesion Molecule

VOC Vasoocclusive crisis

Aim of the work

The aim of this work is studying the pathogenesis of sickle cell disease, the role of NO in this disease, its complications such as acute chest syndrome and anesthetic implications •

Introduction

Sickle cell disease is one of the most prevalent genetic diseases. Worldwide pulmonary disease, manifested as the acute chest syndrome (ACS), is a common complication of sickle cell disease, accounting for 25% of premature deaths.

The last decade has witnessed a convergence of research pathways that were leading towards a better understanding of the new possible pathophysiology and therapies for this disease and new data on the effects of nitric oxide (NO) on sickle cell hemoglobin and interaction between them . (**Bunn, 1994**)

The acute chest syndrome is a common form of lung injury in sickle cell disease. When severe, this syndrome is analogous to the acute respiratory distress syndrome. The acute chest syndrome is the second common cause of hospitalization among patients with sickle cell disease and the leading cause of admission to an intensive care unit and premature death. It is found that about 60% of these patients with severe acute chest syndrome (ACS) had pulmonary hypertension and core pulmonale.

The risk for developing an ACS episode appears to be increased following surgery, with an average to the development of ACS of 3 days post surgery.

(Gladwin and Vichinsky, 2008)

The perioperative period can offer a unique insight into the origins of acute and chronic complications of sickle cell disease. An examination of the assumptions and consequences of anaesthetic practice aimed at the prevention and treatment of these complications, similarly can provide a useful distillation of management principles.

(Firth and Head, 2004)

PATHO-PHYSIOLOGY OF SICKLE CELL DISEASE

ROLE OF NITRIC OXIDE IN SICKLE CELL DISEASE

ACUTE CHEST SYNDROME AND CLINICAL FEATURES OF SICKLE CELL DISEASE

ANESTHETIC MANAGEMENT OF SICKLE CELL DISEASE

POST OPERATIVE CARE:

POST OPERATIVE CARE:

It is a crucial time for patient's with sickle cell disease. Skilled supervision is required as anesthetic accidents often occur during the recovery period. The same principles of management employed during surgery should be continued in the post operative period as oxygenation and hydration.

Postoperative analgesia

Postoperative pain management is challenging. Patients with sickle cell disease may have very high perioperative analgesic requirements, and may have tolerance to opioids. A multimodal approach should be used with a combination of opioids where indicated, paracetamol, NSAIDs, and regional anesthesia when possible (*Goldschneider et al.*, 2001).

Pain management strategies that may work in other people may not be as effective in this patient group owing to tolerance to analgesics developed over many years. Increasingly, patients with SCD who experience acute pain crisis are treated with a patient-controlled analgesia pump delivery system for opiates; therefore, it is likely that patients