Characterization Of Macular Edema From Various Etiologies By Optical Coherence Tomography

Thesis
Submitted for partial fulfillment of
M.D. Degree in Ophthalmology

By **Tamer Abdel Fattah Badran**M.B. B.Ch., M.Sc. Ophthalmology
Ain Shams University

Supervised by

Professor Doctor: Negm El Dien Helal Abdullah

Professor of Ophthalmology Faculty of medicine, Ain Shams University

Professor Doctor: Magda Mohamed Mahmoud Sami

Professor of Ophthalmology
Faculty of medicine, Ain Shams University

Professor Doctor: Fikry Mohamed Zaher

Professor of Ophthalmology
Faculty of medicine, Ain Shams University

Faculty of Medicine
Ain - Shams University
Cairo
Egypt

تمييز الأنواع المختلفة لأرتشاح الماقولا بأستخدام الراسم المقطعي البصري المترابط

رسالة توطئة للحصول على درجة الدكتوراة في أمراض العيون

مهدمة من

الطبيبم/ تامر عبد الفتاح بدران

بكالوريوس الطب والبراحة ماجستير طب وجراحة العيون

تحت اشراها

الأستاذ الدكتور/ نجم الدين هلال عبد الله

أستاذ طب و جراحة العيون كلية الطب جامعة عين شمس

الأستاخة الدكتورة/ ماجدة محمد محمود سامي

أستاذ طب و جراحة العيون كلية الطب جامعة عين شمس

الأستاخ الدكتور/ فكرى محمد زاهر

أستاذ طب و جراحة العيون كلية الطب جامعة عين شمس

كلية الطب - جامعة عين شمس جمهورية مصر العربية - القاهرة مرددة مصر العربية - القاهرة

CONTENTS

<u>Introduction:</u>	Page ۱
Aim of the work	Page ٤
<u>Anatomy:</u>	هPage ه
Pathology and pathogenesis:	Page ۱۰
OCT principles and techniques:	Page ٣١
Patients and methods:	Page oo
Results:	Page ٦٧
<u>Discussion</u> :	Page 171
Conclusion:	Page ۱۳٥
<u>Summary:</u>	Page ۱۳۸
References	Page ۱٤۱
Arabic summary	

List of Graphs

Graph (1):	Relation between CFT and VA in the first groupF	age vi
Graph (٢):	Demographic distribution of ESC, ICS, CFCS, ORS and PVD in the first groupF	age v
Graph (٣):	Distribution and percentage of different forms of macular edema in the first groupF	age ۸۱
Graph (ε):	Relation between CFT and VA in the second group P	age 9·
Graph (o):	Demographic distribution of ESC, ICS, CFCS, ORS and PVD in the second group	age ۹۲
Graph (ন):	Relation between CFT and VA in the third groupP	age ۹۸
Graph (v):	Demographic distribution of ESC, ICS, CFCS, ORS and PVD in the third group	je ۱۰۰
Graph (∧):	Relation between CFT and VA in the fourth groupPag	e ۱•٦
Graph (٩):	Demographic distribution of ESC, ICS, CFCS, ORS and PVD in the fourth group	e ۱•۸

Graph (1.): Comparison between the four groups	Page ۱۱۳
Graph (۱۱): Comparison between the four groups as regards SRD	Page ۱۱۵
Graph (۱۲): Comparison between four groups as regards CFT	Page ১১৭

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to my professors for their guidance and help to finish my thesis.

I wish to thank **Professor Doctor Negm El-Dien Helal** for his valuable advices and comments, and his precious supervision.

I would like to thank my **Professor Doctor Magda Samy** for her great support, continuous encouragement and sincere advices not only in my thesis, but in my life too.

I would like also to thank **Professor Doctor Fikry Zaher** for all his efforts and constant guidance in every detail in my thesis.

And finally I would like to thank my family for their non-stop help, love and support.

ANATOMY

General architecture of human retina:

The retina is the innermost coat of the three coats of the eye. It consists of two primary layers: an inner neurosensory retina and an outer retinal pigment epithelium (RPE).

These layers can be traced embryologically to the inner and outer layers of the invaginated optic cup. Between the neural retina and the PRE is a potential space called the subretinal space, across this space, the two layers must adhere. (9)

As seen in the cross-section by light microscopy, *Figure (1),* the retina is represented by 1 · layers from the sclera to the vitreal side, they are:

- 1- Retinal pigment epithelium (RPE).
- T- Photoreceptor layer of rods and cones (R&C)
- Υ- Outer limiting member (OLM).
- Σ- Outer nuclear layer (ONL).
- o- Outer plexiform layer (OPL).
- ٦- Inner nuclear layer (INL).
- V- Inner plexiform layer (IPL).
- Λ- Ganglion cell layer (GCL).
- 9- Nerve fiber layer (NFL).
- ۱ •- Inner limiting membrane (ILM).

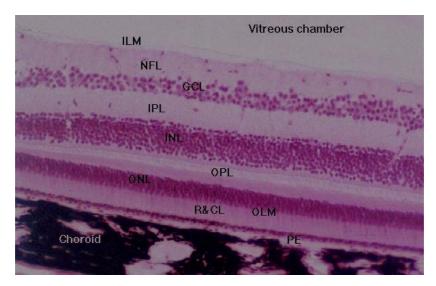


Figure (1): microscopic anatomy of retinal layers

At the fovea, the only layers that are present are the retinal pigment epithelium (RPE), the photoreceptors (cones only), and the external limiting membrane. There are also the outer nuclear layer (which contains the nuclei of the cone cells), the inner fibers of the photoreceptors (the so-called the Henle's fiber layer) and the internal limiting membrane. (1 •)

Topography of the retina:

The retina proper is a thin, delicate layer of nervous tissue that has a surface area of about TTTmm². The major landmarks of the retina are the optic disc, the retinal blood vessels, the area centralis with the fovea and the foveola, the peripheral retina (which includes the equator) and the ora serrata. The retina is thickest near the optic disc where it measures o.o\mm. It becomes thinner toward the

periphery, the thickness reduced to •,\\\mm at the equator and to •,\\\mm at the ora serrata. (1•)

The Macula lutea:

The macula lutea is an oval zone of yellow coloration within the central retina, in red free light and in darkly pigmented individual it is seen as a horizontally oval zone that includes the fovea.

The yellow coloration is probably derived from the presence of the caretnoid pigment, xanthophylls in the ganglion and bipolar cells. (11)

The Area centralis:

The area centralis or the central retina is divided into the foveola and the fovea, with a parafoveal and a perifoveal ring around the fovea. This region of the retina is located in posterior fundus temporal to the optic disc, it is demarcated approximately by the upper and lower temporal arcades, and has an elliptical shape horizontally. With an average diameter of about o,omm, the area centralis corresponds to approximately to degrees of the visual filed and it is adapted for accurate diurnal vision and color discrimination. (9)

The Fovea:

The fovea, which marks the approximate center of the area centralis, is located at the posterior pole of the globe, £mm temporal to the center of the optic disc and about •, Amm below the horizontal meridian.

It has a diameter of 1, Λ omm (which represents o degrees of the visual field) and an average thickness of \cdot , Υ omm, *Figure (\Upsilon)*.

At the center of the fovea, the layers of the retina are thinner so that a central concave indentation is present, the foveola is produced the downward sloping border which meets the floor of the foveal pit is known as the clivus. (17)

The Foveola:

The foveola, which measures •, Yomm in diameter and •, Ymm in thickness, represents the area of the highest visual acuity in the retina, even though its span corresponds to 1 degree of the visual filed only. This is due to the presence of cone photoreceptor only and its avascular nature, the foveola usually appears deeper red than the adjacent retina because of the rich choroidal circulation of the choriocapillaries, which shins through it, **Figure (Y)**

Also because the RPE in this area is darker and more pigmented with tall and narrow cells. The color of the fovea persists and is even accentuated as the so-called (cherry-red spot) when the surrounding retina becomes cloudy as occurs after obstruction of the central retinal artery and in certain metabolic storage diseases. Foveal avascular zone (FAZ) is present within the fovea and measures approximately • .Vo mm in diameter. (17)

The Umbo:

It is known also as the clivus, it is a small central concavity in the floor of the foveola observed clinically as a point corresponding to the normal light reflex but not solely responsible for this reflex. (1)

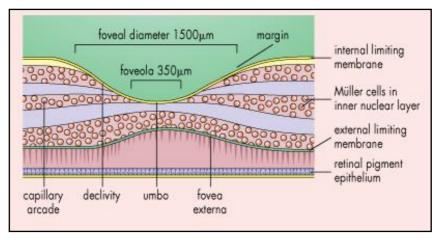


Figure (τ): foveal margin, foveola and umbo. (۱۳)

Figure (*): the macula has the following components from center to periphery: Umbo, foveola, parafovea, and perifovea. (1*)

THE PERIPHERAL RETINA:

The peripheral retina increases the field of vision and is divided into four regions: the near periphery, the mid-periphery, the far periphery and the ora serrata. The near periphery occupies a circumscribed region of 1,0 mm around the area centralis, and the mid-periphery is a 7 mm wide zone around the near periphery.

The far periphery is a region that extends from the optic disc 9-1+mm on the nasal side and 17mm on the temporal side in the horizontal meridian. This asymmetry is due to the location of the optic nerve head on the nasal side of the globe.

The most anterior region of the retina is the ora serrata, which consists of dentate fringe and denotes the termination of the retina. $(1)^{r}$

VASCULAR SUPPLY OF THE MACULA:

The macula is divided into a layers according to blood supply:

- <u>a) Outer layer (RPE and photoreceptors):</u> these layers are supplied by diffusion from choriocapillaries network. It is derived from posterior ciliary arteries (choroidal circulation).
- **b) Inner layer:** These layers are supplied by capillary network of central retinal artery (CRA), which is the first branch of ophthalmic artery (Retinal circulation). (17)

Choriocapillaries are thicker over the posterior pole than the periphery and thicker over the macula than any other part. Choroidal capillaries are larger in diameter than retinal capillaries. They are formed only of a basal membrane and a single layer of endothelial cells, which are fenestrated, **Figure** (Σ , σ).

In 10-T•% of population a variable portion of the papillomacular bundle is supplied by one or more of cilioretinal arteries derived from ciliary circulation, occasionally large cilioretinal artery may supply the entire macular region. Existence of macular supply from the ciliary origin constitutes beneficial malformation in central retinal artery occlusion. (10)

Retinal capillaries in extramacular retina are present in two layers: deep one at the outer part of inner nuclear layer and superficial one at nerve fiber layer. While three layers of capillary nets supply the peripheral macular region, as another superficial layer is present at inner boundary of inner nuclear layer .In the perifoveal region, retinal capillary bed is reduced to one layer. (17)

Retinal capillaries consist of endothelial cells encircled by basement membrane and surrounded by pericyte. Stained preparations showed endothelial cell nuclei (pale staining, oval) and internal pericyte nuclei (dark staining, round). In normal retina the two nuclear types are distributed in ratio of 1:1. (17)

BLOOD RETINAL BARRIER (BRB):

As in the brain the neural retina is protected from large molecular toxic substances by a barrier. The outer retinal layers are protected by zonulae occludens between the retinal pigment epithelial cells (outer BRB). The inner retinal layers are protected by zonulae occludens between retinal capillary endothelial cells (inner BRB) the permeability of the retinal blood vessels is important because there is barrier between the circulation and the retina.