Laboratory Markers of Inflammatory Bowel Disease

Essay

Submitted For partial Fulfillment Of Master Degree
In Clinical Pathology

By

Hanan Hussein Mohamed Mansour

M.B.B.CH

Under Supervision of

Professor: Farid Adly Farid

Professor of Clinical and Chemical Pathology Faculty of Medicine. Ain- Shams University

Dr. : Amira Ibrahim Hamed

Lecturer of Clinical and Chemical Pathology Faculty of Medicine. Ain- Shams University

Faculty of Medicin
Ain Shams University
2008

Acknowledgement

I wish to express my deep appreciation and gratitude to **Prof. Farid Adly** Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain-Shams University, for his gracious encouragement and constructive guideness which was paramount axis in the initiation and progression in this work.

I would like to express special thanks and gratitude to Dr.Amira Ibrahim, lecturer of Clinical and Chemical Pathology, Faculty of Medicine. Ain-Shams University, for her meticulous supervision, continuous interest, kind help, sincere effort and generous support through every step of this study.

I would like to send my best regards and thanks to my family especially my father who taught me how to work and my mum for her kind heart and for my mother in low for her support as well as to my husband for his great help and continuous encouragement and for my brothers and for my beloved kids Toka and Yousef, many thanks for all.

List of Abbreviations

ACD Anaemia of Chronic Disease

AJ Adherence junctions

AJC Apical junctional complex

ANCA Antineutrophil cytoplasmic antibodies

APCs Antigen- presenting cells

ASCA Anti-Saccharomyces cervisiae

CARD-15 Caspase recruitment domain family, member 15

CDAD Clostridium difficile-associated disease

CBC Complete blood count

CD Crohn's disease

CD Cluster of differentiation

COX-2 Cyclooxygenase-2
CRC Colo rectal cancer

CRP C- reactive protein

CT scan Computed Tomography scan

DLG5 Discs large homolg 5

E-Coli Escherichia Coli

EGE Eosinophilic gastroenteritis

ELISA Enzyme-Linked Immunosorbent Assay

ESR Erythrocytic sedimentation rate

FBDs Functional Bowel Disorders

GALT Gut associated lymphoid tissue

GIT Gastroinstinal tract

Hb Haemoglobin

HLA Human leucocyte antigen

HMG High Motility Group

HRT Hormon replacement therapy

IBD Inflammatory bowel disease

IBS Irritable bowel syndrome

IC Intermediate colitis

ICOS Induible T cells Co stimulator

Ig A Immunoglobuline A

Ig G Immunoglobuline G

IFN Interferon

IFT Intestinal function tests

IGG Immunoglobulin G

IL Interluken

IL-R Interleukin receptor

IL-RA Interleukin receptor antagonists

Kd Kilo Dalton

LPS Lipo polysaccharids

M2-PK M2-Pyruvate Kinase:

MAdCAM Mucosal addressin cell adhesion molecule

MDR1 Multi drug resistance 1

MDS Myelodysplastic syndrome

MRI Magnetic Resonance Imaging

NF kb Nuclear Factor kb

NDDIC National Digestive Diseases Information Clearinghouse

NIF Neutrophil Immobilising Factors

NSAIDs Non steroidal anti-inflammtory drugs

OCTN 1 Organic cation tranporter 1

OCs Oral contraceptives

OMPc E.coli Outer Membrane Porine

PANCA Perinuclear antineutrophil cytoplasmic antibodies

PCR Polymerase chain reaction

PMNe Polymorphonuclear neutrophil elastase

PPARG Peroxisone proliferative activated receptor gamma

SC Schistosoma colitis

SLC22A4 Solute carrier family member 22 A4

STfR Serum transferrin receptor

TGF Transforming growth factor

TH1 T – helper 1
 TH2 T- helper 2

TJs Tight junctions

TfR Transferrin receptor

TLRs Toll- like receptors

TNF Tumour necrosis factor

TR 1 Type1 regulator T cell

UC Ulcerative Colitis

US Ultra Sound

WBCs White blood cells count.

WHO World Health Organization

List of Tables

		Page
Table (1)	Cytokines associated with inflammatory bowel disease	15
Table (2)	key features of major forms of IBD	64
Table (3)	Biomarkers that may be used to determine activity in IBD	87
Table(4)	The acute phase proteins	88

List of Figures

Figure (1)	• Crohn's disease involving the small intestine8		
Figure (2)	• Ulcerative colitis involving the whole colon10		
Figure (3)	• The immune response in IBD13		
Figure (4)	• The Interaction of various factors causing IBD16		
Figure (5)	• Fistula formation in CD patients45		
Figure (6)	Colonic pseudopolyps with intractable ulcerative colitis		
Figure (7)	• Adenocarcinoma with ulcerative colitis48		
Figure (8)	The overlapping manifestations of CD, UC, and Intermediate colitis		
Figure (9)	• Aphthous ulcers involving the tongue, lips, palate and pharynx		
Figure (10)			
Figure (11)	• Normal colon at endoscopy74		
Figure (12)	• Ulcers in the intestine that are typical for Crohn's disease		
Figure (13)	• Ulcerative colitis at endoscopy75		
Figure (14)	• Microcytic hypochromic anemia82		
Figure (15)	• Megaloblastic anemia84		

List of the contents

	Page
List of Abbreviations	i
List of Tables	iv
List of Figures	V
Introduction and Aim of the Work	1
Review of Literature	
*Inflammatory Bowel disease	
I - historical view	3
II- Epidemiology	3
III- pathogenesis of IBD	6
IV- Etiology of IBD	16
a- Etiologic theories of IBD	17
b- Etiologic factors:	17
V-Clinical manifestations	41
a - Intestinal manifestations of CD	41
b- Intestinal manifestations of UC	46
c- Extra intestinal manifestations	50
d- Reproduction in IBD	56
e-Differential diagnosis	58
VI- Prognosis of IBD	66
VII-Mortality in IBD	67
*Diagnosis of IBD	
I-Clinical diagnosis	69
II- Imaging studies	69
III-Laboratory diagnosis:	77
a- Stool analysis	77

b- Blood test	79
c- Intestinal function tests	95
d - Serological markers of IBD	107
* Summary	116
* Recommendations	119
*References	121

Inflammatory bowel disease (**IBD**) is a group of diseases characterized by non-specific inflammation of the gastrointestinal tract (**GIT**). Two major forms are recognized; Crohn's disease (**CD**) which can affect any part of the GIT, most commonly the ileum and the ascending colon; and Ulcerative Colitis (**UC**) which affects only the large bowel. Both are more common in Western countries (**Peter et al., 2000**).

The exact etiologies remain uncertain, results from research in animal models, human genetics, basic science and clinical trials have provided important new insights into the pathogenesis of chronic, idiopathic, relapsing, and immune-mediated intestinal inflammation. These studies indicate that Crohn's disease and ulcerative colitis are heterogeneous diseases characterized by various genetic abnormalities (Sartor., 2006).

Laboratory markers have been investigated in inflammatory bowel disease (IBD) for diagnostic and differential diagnostic purposes, for assessment of disease activity and risk of complications, for prediction of relapse, and for monitoring the effect of therapy. Markers of inflammation {especially C reactive protein (CRP)} correlates well with disease activity in Crohn's disease and has the potential to select responders to biological therapies introduced for treatment of IBD (**Egan et al., 2006**).

Many Crohn's disease (CD) patients develop complications (fistulae and abscesses), and require surgery, often repeatedly and at variable instances. Identifying serological markers that determine their early or repeated manifestation can enable implementing more aggressive preventive strategies (Amre et al., 2006).

Novel fecal markers such as (Calprotectin) and other leukocyte proteins can be used to monitor disease activity in patients with CD as well as in UC, moreover they provide a rapid and non invasive tool to discriminate patients with IBD from those with Irritable bowel syndrome (IBS) (Vermeire et al., 2006).

Aim of the work:

The aim of this essay is to highlight the laboratory markers that have been recently used for diagnosis, differential diagnosis and prognosis of IBD.

I – Historical view:-

Inflammatory bowel diseases were described by <u>Giovanni Battista Morgagni</u> (1682-1771), and by the Polish surgeon Antoni Leśniowski in 1904 (leading to the use of the eponym "Leśniowski-Crohn disease" in <u>Poland</u>) then by the <u>Scottish physician T. Kennedy Dalziel in 1913</u> (**Crohn et al., 1932**; and **Blumberg., 2008**).

<u>Burrill Bernard Crohn</u>, an American gastroenterologist at <u>Mount Sinai Hospital</u>, described fourteen cases in 1932, and submitted them to the <u>American Medical Association</u> under the term "Terminal ileitis": A new clinical entity". Later on, he along with colleagues Leon Ginzburg and Gordon Oppenheimer published the case series as "Regional ileitis": a pathologic and clinical entity (**Crohn et al., 1932; and Blumberg., 2008**).

II-Epidemiology:

The epidemiological studies are aimed to better define the burden of illness, to explore the mechanism of association with environmental factors, and to identify new risk factors (Lakatos., 2006).

The incidence rate of UC varies greatly between 0.5- $24.5/10^5$ inhabitants, while that of Crohn's disease varies between 0.1- $16/10^5$ inhabitants worldwide, with prevalence rates of IBD reaching up to $396/10^5$ inhabitants. A further difference is that the previously reported predominance of UC is diminishing, as CD is becoming more prevalent (**Lakatos.**, **2006**).

The average annual incidence of Intermediate colitis (IC) [patients with features of both diseases] ranges 1.6 to 2.4/100,000 versus 7.3 to 13.6/100,000 for UC. At the time of initial diagnosis of inflammatory bowel disease (**Geboes et al., 2003**).

The incidence varies according to:

A-Geographical distribution:

Inflammatory bowel diseases are a public health problem in developed countries as 1 per 1000 people suffers from these diseases. Most of affected people are young adults (Podolosky and Daniel., 2002).

IBD is traditionally considered to be common in the Western world, and its incidence has sharply increased since the early 1950s. In contrast, until the last decade, low prevalence rates have been reported from other parts of the world including Eastern Europe, South America, Asia and the Pacific region (Vernier et al., 2005).

Recent trends indicate a change in the epidemiology of IBD within previously low incidence areas, now reporting a progressive rise in the incidence, while in West European and North American countries the figures have stabilized or slightly increased, with decreasing incidence rates for ulcerative colitis. Some of these changes may represent differences in diagnostic practices and increasing awareness of the disease (Lakatos., 2006).

In Middle-East IBD is traditionally reported to be high among Jews coming from the United States and Northern Europe. In Israel, the incidence is somewhat lower and Ashkenazi Jews have a higher incidence than Sephardic Jews. In 2000, Niv et al., reported an annual incidence of 5.04/10⁵ for UC for a ten-year follow-up period between 1987-1999. The prevalence rate rose from 121.0/10⁵ to 167.2/10⁵ (**Niv et al., 2000**).

In contrast, Arab countries in the Middle East are still reporting low incidence rates. A prospective hospital-based study from Saudi Arabia reported an estimated incidence of $0.5/10^5$ and prevalence of $5.0/10^5$ for IBD in children in 1993-2002 (El Mouzan., 2006; and El Ghamdi et al., 2004)

In Egypt, colitis is a common clinicopathological entity, a study during the period from 1975-1985 on 786 patients with colonic diseases revealed that 32.7% of the cases showed colonoscopic polyposis most of them were schistosomal. Colonic masses were detected in 8.4% of the cases (schistosomal or adenocarcinoma). Colonic ulcerations were detected in 8.2% of cases (ulcerative colitis, schistosomal ulcers and adenocarcinoma of the colon). Schistosomal colitis (sc) was detected in 7.7% of cases.) (**Thakeb et al, 1987**).

The prevalence of IBD in Egypt is 152,234 to 76,117,421 at 2004 according to The National Digestive Diseases Information Clearinghouse (NDDIC) which is a service of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). NIDDK is part of the National Institutes of Health under the U.S. Department of Health and Human Services (US Census Bureau, International Data Base, 2004).

The differences in incidence rates among various geographical areas suggest a role of certain environmental factors. It is known that the incidence differs among different ethnic groups living in the same geographic region (Lakatos et al., 2006).

B-Age:

The peak incidence of ulcerative colitis occurs between the ages of 15 and 25y, it is thought to be a <u>bimodal distribution</u> in age of <u>onset</u> with a second peak in incidence occurring in the 6th decade of life (**Hanauer.**, 2006).

It is important but difficult to study the epidemiology of IBD in children. Although both UC and CD are rare below the age of 11 years, the upper age limit varies between 14 and 17 years of age. The incidence of these diseases increases rapidly after adolescence. The incidence of IBD, in particular CD had

increased over the last ten years. Furthermore, upper gastrointestinal involvement is reported to be more common in children with CD (Gopal et al., 2006).

Siblings or children of people with Crohn's disease are 3 to 20 times more likely to develop the disease (**Tysk et al., 1998**).

C-Sex:

The male-to-female ratio is approximately equal for both ulcerative colitis and Crohn disease (Lakatos., 2006).

III-Pathogenesis of Inflammatory Bowel Disease:

In the decades since the major forms of IBD were defined on the basis of clinical manifestations, investigators have been challenged to identify the fundamental pathophysiologic processes underlying these enigmatic disorders, and clinicians have struggled to provide effective therapy for the often dismaying clinical manifestations. Clinical experience has led to the generally accepted notion that Crohn's disease and ulcerative colitis are distinct, if not discrete, entities. And stem possibly from acommon mechanism with an exact etiology that remains obscure (Hanauer., 2006).

A-The major forms of IBD are:

1-Crohn's disease (CD):

Regional Enteritis; Granulomatous Ileitis or Ileocolitis:

CD is a lifelong inflammatory disease that damages the digestive tract lining. It can occur anywhere in the digestive tract and may occur simultaneously in different locations (**Stange et al.**, **2006**).