Genetic Construction of *Xanthomonas campestris* Higher Xanthan Producer Strain(s) and Capable to Utilize Whey

Shimaa Mahmoud Abdel-Hamid Salem Ghazal B.Sc., in Microbiology (2001)

Submitted impartial fulfillment of the requirement for the Degree of Master of Science in Microbiology

Supervised by

Prof. Dr.
Kamal Mohamed Ali Khalil
Prof. of Genetics

Prof. of Genetics
Genetics and Cytology
Department
National Research Center

Ass. Prof. Dr. Hassan Mahmoud Gebreel

Ass. Prof. of Microbiology Microbiology Department Faculty of Science Ain Shams University

Dr.
Wael Samir El-Sayed
Lecturer of Microbiology
Microbiology Department

Faculty of Science Ain Shams University

Microbiology Department Faculty of Science Ain Shams University 2009

Approval Sheet

Genetic Construction of Xanthomonas campestris

Higher Xanthan Producer Strain(s) and Capable to Utilize Whey

By

Shimaa Mahmoud Abdel-Hamid Salem Ghazal

B.Sc., in Microbiology (2001)

Ain Shams University

Supervisors

Approval

1. Prof. Dr. Kamal Mohamed Ali Khalil

Prof. of Microbiology Genetics and Cytology Department. Genetic Engineering and Biotechnology Division National Research Center

2. Ass. Prof. Dr. Hassan Mahmoud Gebreel

Ass. Prof. of Genetics Microbiology Department Faculty of Science Ain Shams University

3. Dr. Wael Samir El-Sayed

Lecturer of Microbiology Microbiology Department Faculty of Science Ain Shams University

"وَيَسْأُلُونَكَ عَنِ الرُّوحِ فَلَ الرُّوحِ فَلَ الرُّوحِ فَلَ الرُّوحِ مِنْ أَمْرِ رَبِي فَلَ الرُّوحِ مِنْ أَمْرِ رَبِي وَمَا أُوتِيثُم مِن الْعِلْمِ إِلاَّ وَمَا أُوتِيثُم مِن الْعِلْمِ إِلاَّ قَلِيلاً "

سوره الاسراء ايه (85)

ACKNOWLEDGEMENT

First of all, I thank ALLAH for what he gave me and what I become today.

My utmost gratitude goes to my supervisor, **Professor Dr.** Kamal Mohamed Ali Khalil, Prof. of Genetics, National Research Center, Dokki, Giza. I would like to express my deep and sincere gratitude for his wide knowledge and his logical way of thinking has been of great value for me. His understanding, encouraging and personal guidance have provided a good basis for the present thesis.

I am deeply indebted to my supervisor Ass. Prof. Dr. Hassan Mahmoud Gebreel, Ass. Professor of Microbiology, Faculty of Science, Ain Shams University. Whose help and encouragement helped me in all the time of research.

It is difficult to overstate my gratitude to my supervisor, **Dr.** Wael Samir, Lecturer of Microbiology, Faculty of Science, Ain Shams University. With his enthusiasm, his inspiration, and his great efforts, he helped throughout my thesis-writing period; he provided encouragement, sound advice and good teaching.

My colleagues from the Laboratory of Applied Microbial Genetics, Cytology and Genetics Department, National Research Center, Dokki, Giza. supported me in my research work. I want to thank them for all their help, support, interest and valuable hints. Especially I am obliged to **Dr. Usama Mohamed Badr**.

During this work I have collaborated with many colleagues for whom I have great regard, and I wish to extend my warmest thanks to all those who have helped me with my work in **Centeral Laboratory**, **National Research Center**, **Dokki**, **Giza**. Finally, there is no words can express my gratitude and appreciation to my great and precious **mother**. Also, I would like to give my special thanks to my sister and my sincere and honest husband whose patient and love enabled me to complete this work.

Dedication

To The Soul of My Father

To My Great and Precious Mother

To My Little Sister

This thesis has not been previously submitted for any degree at this or any other university.

Signed

Shimaa Mahmoud Ghazal

CONTENTS

	Page
INTRODUCTION	1
AIM OF WORK	3
2. REVIEW OF LITERATURE	4
2.1. Xanthomonas campestris	4
2.2. Xanthan gum	6
2.2.1. Chemical Structure of Xanthan	6
2.2.2 Application of xanthan gum	8
2.2.2.1. Human-Food Industry	8
2.2.2.2. Animal-Feed Industry	8
2.2.2.3. In agriculture	9
2.2.2.4. In the petroleum industry	9
2.2.2.5 Cosmetics and pharmaceutical	9
2.2.2.6. Other technical application	9
2.2.3. Xanthan gum production	9
2.2.4. Genetic improvement of xanthan production	14
2.2.4.1. Genetics of xanthan gum biosynthesis	16
2.2.4.2. β -galactosidase gene, improvement and gene transfer	_
2.2.4.3. Induction of mutations	17
2.2.4.4. Ultraviolet as a mutagen	19
	22
2.2.4.5. Transconjugation	24
2.2.4.6. Transposable elements	25
2.2.5 Xanthan Gum: purification, properties and Characterization	31
2.2.5.1. Recovery and Purification of xanthan	31
2.2.5.2. Properties of xanthan Gum	
-	33

2.2.5.3. Characterization of xanthan Gum	35
Fourier Transform Infrared (FT-IR) spectroscopy	36
3. MATERIALS AND METHODS I. MATERIALS	38
	38
I.1. Experimental microorganisms and plasmids	38
I.2. Raw Materials	40
I.3. Culture media	41
I.3.1. Preservation and maintenance media	41
I.3.2. Fermentation media (Xanthan Production	
media)	42
I.4. Ultraviolet (UV) treatment of Xanthomonas campestris	43
I.5. Determination of non reducing oligosaccharides sugars	43
I.6. Determination of reducing sugars	44
I.7. DNA Agarose Gel Electrophoresis	45
I.7.1. Plasmid DNA Extraction	45
I.7.2. Stock Solutions and Buffers	45
I.7.3. Working solutions and buffers	46
I.7.4. Loading buffer	46
I.7.5. Agarose gel	46
I.8. Characterization of xanthan Gum	46
I.8.1.Fourier Transform Infrared (FTIR) spectroscopy.	46
II. METHODS	47
II.1. Maintenance of cultures	
II.2. Operational conditions	47
II.2.1. Inocula preparation	47
II.2.2.Fermentation conditions	47
	48
II.3. Transconjugation of X. campestris	48

II.4. Ultraviolet (UV) Treatment of Xanthomonas campestris	49
II.5.Chemical & Biological parameters of the culture	49
II.5.1. Growth measurements	49
II.5.1.1. Colorimetric method	49
II.5.1.2. Gravimetric method	50
II.5.2. The measurement of pH value	50
II.5.3. Determination of non reducing oligosaccharides sugars	50
II.5.4. Determination of reducing sugars	51
II.5.5. Yield Factor	51
II.5.6. Sugar utilization efficiency	51
II.5.7. Optical density of xanthan	52
II.6.Xanthan production parameters	52
II.6.1. Precipitation and purification of xanthan	52
II.6.2.Determination of relative viscosity	52
II.6.3.Conversion coefficient (%)	53
II.6.4. Yield of xanthan	53
II.6.5.Productivity	53
II.7. DNA Agarose Gel Electrophoresis	53
II.7.1. Gel Preparation	54
II.7.2. Plasmid Isolation and Sample Preparation	54
II.7.3. Samples Loading and Running	55
II.7.4. staining and Examination	55
II.8. Characterization of Xanthan Gum	55
II.8.1. Fourier Transform Infrared (FTIR)	55
spectroscopy	55

4. RESULTS 4.1. Screening of the available culture of xanthan producing bacteria using different media 56 4.2. culture conditions and fermentation media for production of xanthan..... 56 4.3. β-galactosidase gene(s) improvement in Xanthomonas campestris through plasmid transconjugation via available plasmid(s)....... 58 4.3.1. Isolation, selection and characterization of transconjugants(s) capable to utilize whey..... 63 A. Gene environmental interaction between transconjugants and glucose as carbon source 65 B. Gene environmental interaction between transconjugants and sucrose as carbon source 65 C. Gene environmental interaction between transconjugants and lactose as carbon source....... 65 D.Gene environmental interaction between transconjugants and whey as carbon source...... 66 4.3.2. The best five transconjugants selected according to their high ability to utilize lactose and whey...... 67 4.4. Small scale preparations of plasmid and DNA gel electrophoresis of transconjugant(s)..... 69 4.5. Induction of mutation using ultraviolet irradiation UV..... 71 4.5.1. Isolation of remarkable xanthan producer mutant(s)..... 73 4.5.1.1. First mutants group..... 75 4.5.1.2. Second mutants group..... 79 4.5.1.3. Third mutants group..... 83 4.5.1.4. Fourth mutants group.....

87

4.5.1.5. Fifth mutants group	91
4.5.2. Comparison between the best xanthan	
producer mutants with wild type and mother strain	o =
	95
4.6. Study of the selective mutant(s) and the gene	
environmental conditions interaction for	
xanthan production	100
4.6.1. Effect of nitrogen concentration in lactose containing medium on xanthan production	
measured as xanthan weight	101
4.6.2. Xanthan production of the best two	101
mutants using four different carbon	
sources measured as xanthan weight	
through seven days of fermentation	103
4.6.3. Comparison of xanthan production of the	
best two mutants, using four different carbon sources, after seven days of	
fermentation	106
18 Characterization of vanthan gum produced	100
4.8. Characterization of xanthan gum produced from the two selected mutants Tn-UV-1 and	
Tn-UV-2	109
4.8.1. Fourier Transform Infrared spectra	109
DISCUSSION	109
	115
SUMMARY	128
REFERENCES	135
APPENDIX	166
ARARIC SUMMARY	_00

List of Tables

Table numbers	Titles	Page
Table (1)	The bacterial strains used.	38
Table (2)	The plasmids used in this investigation.	40
Table (3)	The preservation and maintenance media.	41
Table (4)	The Fermentation media used.	42
Table (5)	Stock solution of Tris-Acetic acid EDTA buffer (TAE) (50X).	45
Table (6)	Stock solution of ethidium bromide, 10 mg/ml.	45
Table (7)	Stock solution of loading buffer.	45
Table (8)	Working solution of TAE buffer (1X).	46
Table (9)	Working solution of ethidium bromide.	46
Table (10)	FTIR spectral data (cm-1) of commercial xanthan gum, Wild type strain, Tn-UV-1 and Tn-UV-2.	114

List of Figures

Number	Title	Page
Figure (1)	Chemical Structure of the repeating unit of xanthan gum	7
Figure (2)	Structure of the transposable element Tn5	27
Figure (3)	Two available strains (<i>Xanthomonas campestris</i> wild type 1 & 2) used in this investigation.	57
Figure (4)	Comparison between effects of types of fermentation media on relative viscosity of WT1	59
Figure (5)	Comparison between effect of types of fermentation media on relative viscosity WT2	60
Figure (6)	Results of relative viscosity of WT1& WT2 on FM2	61
Figure (7)	Agarose gel electrophoresis of pSUP5011 conjugation suicidal plasmid (P).	62
Figure (8)	Transconjugation plat between <i>E. coli</i> and <i>X. campestris</i> (A) and transconjugants colonies (B)	62
Figure (9)	Xanthan Production of 126 transconjugants using four different carbon sources, compared with mother strain production, divided in three levels, low, the same and higher than mother strain production.	64
Figure (10)	The best five transconjugants and their variant ability to utilize four different source of carbon	68
Figure (11)	The electrophoretic gel of the five selected transconjugants (lane 4-8), WT1 (lane 3), pSUP5011 (lane 2) and DNA marker (lane 1).	70
Figure (12)	Transconjugant TC 49 survival Ratio after UV Treatments	72

Figure (13)	Some isolates which were isolated from transconjugant TC 49 a	74
	er UV treatment for 7 min., (A) and after 5 min., (B)	
Figure (14)	Xanthan production of first mutants group as xanthan weights	76
	using three different carbon sources	70
	Xanthan production of first mutants group as xanthan weights	
Figure (15)	in whey medium and its relation to dry weights and residual	78
	sugars	
TI (16)	Xanthan production of second mutants group as xanthan	00
Figure (16)	weights using three different carbon sources	80
	Xanthan production of second mutants group as xanthan	
Figure (17)	weights in whey medium and its relation to dry weights and	82
	residual sugars	
E' (19)	Xanthan production of third mutants group as xanthan	84
Figure (18)	weights using three different carbon sources	84
	Xanthan production of third mutants group as xanthan	
Figure (19)	weights in whey medium and its relation to dry weights and	86
	residual sugars	
Figure (20)	Xanthan production of fourth mutants group as xanthan	00
Figure (20)	weights using three different carbon sources	88
	Xanthan production of fourth mutants group as xanthan	
Figure (21)	weights in whey medium and its relation to dry weights and	90
	residual sugars.	
E' (22)	Xanthan production of fifth mutants group as xanthan	02
Figure (22)	weights using three different carbon sources	92
	Xanthan production of fifth mutants group as xanthan weights	
Figure (23)	in whey medium and its relation to dry weights and residual	94
	sugars	
Figure (24)	Xanthan production of top six mutants as xanthan weights in	96
	The first service of the mountain weights in	

List of Figures...

	whey medium and its relation to dry weights and residual sugar	
Figure (25)	Xanthan production measured as xanthan weights of top six	98
	mutants using four different carbon sources.	70
	Xanthan production of the best two mutants, Tn-UV-1 and	
Figure (26)	Tn-UV-2 in lactose containing media with three different	102
Figure (26)	concentrations of ammonium nitrate, 0.9152 g/l, 1.144 g/l and	102
	1.3728 g/l as a nitrogen source, measured as xanthan weights.	
	Xanthan production of the best two mutants, Tn-UV-1 and	
Figure (27)	Tn-UV-2 using four different carbon sources, glucose, lactose,	104
	sucrose and whey, measured as xanthan weights	
Figure (28)	Final xanthan production of the best two mutants, Tn-UV-1	
	and Tn-UV-2 using four different carbon sources, measured	107
	as xanthan weights after seven days of fermentation	
Figure (29)	FT-IR spectra of commercial xanthan gum	110
Figure (30)	FT-IR spectra of xanthan gum produced from WT1	111
Figure (31)	FT-IR spectra of xanthan gum produced from Tn-UV-1	112
Figure (32)	FT-IR spectra of xanthan gum produced from Tn-UV-2	113