Detection of hTERT Gene Amplification Using FISH Technique in Acute Myeloid Leukemia: Relation to the Standard Prognostic Factors

Thesis

Submitted for Partial Fulfillment of M.Sc. Degree in Clinical and Chemical Pathology

By

Rania Ahmed Helal

M.B., B.Ch Ain Shams University

Supervised by

Professor/Iman Mohamed Amin Omar

Professor of Clinical and Chemical Pathology Faculty of Medicine Ain Shams University

Doctor/Amal Abd El Hamed Mohamed

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine Ain Shams University

Doctor/Maha Mohamed Eid

Researcher of Human Cytogenetics National Research Center

> Faculty of Medicine Ain Shams University 2009

الكشف عن تضاعف الhTERT جين باستخدام تقنية التهجين الموضعي بالوميض الضوئى في مرض الابيضاض النقيي الحاد: علاقته بالعوامل القياسية للتنبؤ

رسالة توطئة للحصول علي درجة الماجستير في الباثولوجيا الإكلينية و الكيميائية

مقدمة من طبيبة/رانيا أحمد هلال بكالوريوس الطب والجراحة العامة كلية الطب- جامعة عين شمس

تحت إشراف الاستاذ الدكتور /إيمان محمد أمين عمر أستاذ الباثولوجيا الإكلينية و الكيميائية

الدكتور/آمال عبد الحميد محمد

كلية الطب-جامعة عين شمس

أستاذ مساعد الباثولوجيا الإكلينية و الكيميائية كلية الطب-جامعة عين شمس

الدكتور/مها محمد عيد

باحث الوراثة البشرية الخلوية المركز القومي للبحوث

كلية الطب – جامعة عين شمس 2009

Acknowledgement

First of all, great thanks to **ALLAH** who is most merciful, for all the countless gifts I have been offered.

I would like to express my endless gratitude and appreciation to **Professor**. Iman Mohamed Amin Omar Professor of Clinical and Chemical Pathology, Ain Shams University for her continuous guidance, valuable suggestions and keen supervision throughout the work. Her scientific advices were kindly given to me and are beyond acknowledgement.

I would like to express my sincere gratitude and deepest appreciation to **Professor**. **Nivine Abd El Rahman Helmy**, Professor of Human Genetics, National Research Center, for her instructive supervision & encouragement, remarkable guidance and great concern throughout the course of this work.

My endless thanks to **Doctor.** Amal Abd El Hamed **Mohamed**, Assistant Professor of Clinical and Chemical Pathology, Ain Shams University, for her valuable instructions, generous help, unlimited support and effort to get best out of this work.

Indeed, words do fail me when I come to express my profound gratitude and deep appreciation to **Doctor. Maha**Mohamed Eid for her everlasting support, honest encouragement and for offering me much of her time and effort.

Last, but not least, I would like to thank my family for their actual help and support received in many ways.

Rania Helal

LIST OF ABBREVIATIONS

α Alpha

Approximately

β Beta% Percent°C CentigradeA Adenine

AIDS Acquired immune deficiency syndrome

ALL Acute lymphoblastic leukemia

ALT Alternative Lengthening of Telomeres

AML Acute myeloid leukemia

AML1 Acute myeloid leukemia 1 geneAPL Acute promyelocytic leukemiaATM Ataxia telangiectasia mutated

ATRA All-trans retinoic acid

BAALC Brain and acute leukemia cytoplasmic gene

B-CLL B-cell chronic lymphocytic leukemia

BFB Breakage-fusion-bridges

BM Bone marrow
C Cytosine
c Cytoplasmic

CAE Chloro-acetate esteraseCBF Core binding factor

CCA Conventional cytogenetic analysis

CD Cluster of differentiation

CEBPA CCAAT/enhancer-binding protein
CIR Cumulative incidence of relapse

C-kit Proto-oncogene tyrosine-protein kinase

c-Myc Cellular myelocytomatosis

CML Chronic myeloid leukemiaCN-AML Cytogenetically Normal AML

CNS Central nervous system

CRD Complete remission duration

CR Complete remissionDAPI Diamino phenyl indoleDC Dyskeratosis congenital

del Deletion

DFS Disease-free survival

DKC1 Dyskerin

DNA Deoxyribonucleic acid

DNA-PK DNA-dependent protein kinase

DSB Double strand breaks

DW Distilled water

E2F Transcription factor

E6 E6 protein [Human papillomavirus type 16].

EDTA Ethylene diamine tetracetic acid

EFS Event-free survival

ELISA Enzyme-linked immunosorbent assay

ETO Eight-twenty-one

FAB French-American-British **FdU** 5'-fluorodeoxyuridine

FISH Fluorescence in situ hybridization

FLT3 FMS-like tyrosine kinase 3

FLT3- TKD Tyrosine kinase domain of FLT3

g gramG GuanineG Giemsa

G1 Pre-synthetic phase

H/ACA RNA-protein complex component **HEST1A** Human ever shorter telomeres-1

HiDAC Hhigh-dose cytarabine

HL-60 Human promyelocytic leukemia cells

HLA Human leucocyte antigene

hnRNP A1 Heterogenous nuclear ribonucleoprotein A1
 hnRNP C Heterogenous nuclear ribonucleoprotein C
 hnRNP D Heterogenous nuclear ribonucleoprotein D

HSP90A Heat-shock-90 kDa protein 1, alfa

HSP70-1 Heat-shock-70 kDa protein **hTERC** Human telomerase RNA

hTERT Human telomerase reverse transcriptase

hTR Human telomerase RNA

Hox Homeobox

HSCT Hematopoietic stem-cell transplantation

inv Inversion

IgImmunoglobulinIFN-αInterferon-α

ISH In situ hybridization

ITD Internal tandem duplication

Kbp Kilobase pair **kDa** kilo Dalton

KIT Receptor tyrosine kinase **LDH** Lactate dehydrogenase

LN Lymph node

LSC Leukemic stem cell
LSI Locus specific identifier
LSP Locus- specific probes

MAD1 Mitotic arrest deficient-like 1
MAX MYC associated factor X

Mb Myoglobin

MBRA Transcription-mediated amplification

MDR-1 Multidrug resistant gene

MDS Myelodysplastic syndromes
MFC Multiparameter flowcytometry

MGG May Grunwald Giemsa

mL Millilitre

MPD Myeloproliferative disorders.

MPO Myeloperoxidase

MLL Myeloid/ lymphoid or Mixed lineage

leukemia gene

MRD Minimal Residual Disease mRNA Massenger ribonucleic acid

MYHII Smooth muscle myosin heavy chain

MZF-2 Myeloid cell-specific zinc finger protein 2

n Repeats

NOLA1 Nucleolar protein family A, member 1
 NOLA2 Nucleolar protein family A, member 2
 NOLA3 Nucleolar protein family A, member 3
 NPM1 Nucleophosmin, member 1 gene

NSE Non-specific esterase nt Nucleotides nucleotides

OS Overall survival

P Short arm of the chromosome

P23 Unactive progesterone receptor, 23 kDa

P53 Protein 53 kDa

PARP-1 Poly-ADP ribose polymerase 1

PAS Periodic acid Schiff
PB peripheral blood
PH Pleckstrin homology

PI 3 Phosphatidylinositol 3-kinase PML Promyelocytic leukemia PNA Peptide nucleic acid

POT1 Protection of telomeres 1

iv

PRb Phosphorylated retinoblastoma q Long arm of the chromosome

Q-FISH Quantitative-FISH

Rap1 Repressor activator protein 1

RAR Retinoic acid receptor

Rb Retinoblastoma

RFS Relapse-free survival **rpm** Revolution per minute

RNA Ribonucleic acid

RTK Receptor tyrosine kinase

RT-PCR Reverse transcription-polymerase chain reaction

RT-PCR Real-time-polymerase chain reaction

RTQ Real-time quantitative

SBB Sudan black-B
Sm, Surface membrane
Sp1 Sp1 transcription factor
T Tetrahymena Tetrahymena

T Thymine t Translocation

TCR, T-cell receptor

TdT Terminal deoxynucleotidyl transferase.

TGF-β Transforming growth factor β
 TIN2 TRF1-interacting protein 2
 TIC Table lawls out a sount

TLC Total leukocyte count

TMA Transcription-mediated amplification

TPP1 Tripeptidyl peptidase 1 **TP-TRAP** Two-primer-TRAP

TRAP Telomeric repeat amplification protocol

TRF Terminal Restriction Fragment
 TRF1 Telomeric repeat binding factors 1
 TRF2 Telomeric repeat binding factors 2

TS Telomerase substrate

T/S Telomere-to-Single Copy Gene
VEGF Vascular endothelial growth factor

μg microgramμl microliterUV Ultra violet

WCPP Whole chromosome painting probe

WHO World health organization

WT1 Wilms' tumor 1

XLT X-linked lymphoproliferative syndrome

List of Tables

Table No.	Table Title	Page No.
1	Conditions predisposing to development of AML	7
2	FAB classification for myeloid leukemias	11
3	WHO classification for AML and its FAB equivalent	14
4	Cytochemical stains used for diagnosis of AML	26
5	Antigen expression in AML by FAB classification categories	26
6	WHO criteria for the diagnosis of biphenotypic leukemia	27
7	Methods for the detection of MRD in AML	41
8	Prognostic factors in AML	42
9	Cytogenetic classification of AML	45
10	Telomere associated proteins	59
11	Proteins involved in the telomerase complex	68
12	Interpretation of signals	113

List of Tables

Table No.	Table Title	Page No.
13	Clinical Data of Studied AML Patients	127
14	Laboratory Data of Studied AML Patients	128
15	Immunophenotyping and FAB Classification of Studied AML Patients	129
16	hTERT gene amplification and karyotyping of studied AML Patients.	130
17	Different Patterns of Karyotyping Detected Among Studied AML Patients	131
18	Statistical comparison between "Group I" and "Group II" regarding all studed parameters.	132
19	Statistical comparison between between "Good Outcome" and "Poor Outcome" Patients regarding all studed parameters.	133
20	Statistical comparison between patients with "<20% of amplification" and patients with "≥20% of amplification" regarding all studied parameters.	134

List of Figures

Figure No.	Figure Title	Page No.
1	Principle of karyotype	29
2	The principle of FISH technique	31
3	Principle of PCR technique	36
4	Schematic of the Southern blot hybridization procedure	37
5	Comparative Genomic Hybridization	39
6	Telomeres	57
7	Structure of telomeres	58
8	The end-replication problem	62
9	Telomere Maintenance	64
10	Structure of Telomerase	66
11	Therapeutic strategies for curing leukemia patients.	86
12	The telomeric repeat amplification protocol assay	89
13	FISH technique	92
14	Quantitative-FISH	94
15	Flow-FISH	95

Figure No.	Figure Title	Page No.
16	Distribution of different pattern of karyotyping among studied patients	135
17	Comparison between group I and group II regarding % of amplification /100 cell	135
18	Comparison between good outcome group and poor outcome group regarding % of amplification /100 cell	136
19	Metaphase FISH analysis negative for amplification of hTERT gene (normal) denoted by the presence of two red (hTERT probe at 5p15.33) / two green signals (the control probe at 5q31).	136
20	Metaphase and Interphase FISH analysis negative for amplification of hTERT gene	137
21	Interphase FISH analysis showing amplification (2-4 red signals) / 2 green signals	137
22	Interphase FISH analysis showing amplification (2-6 red signals) / 2 green signals	138
23	Interphase FISH analysis of the relapsed case	138

Figure No.	Figure Title	Page No.
	showing 9 red signals / 2 green signals.	
24	Conventional cytogenetic analysis by G-banding showing numerical aberration in the form of trisomy 8	139
25	Conventional cytogenetic analysis by G-banding showing numerical aberration in the form of tetrasomy 8, trisomy 12, 21	139
26	Conventional cytogenetic analysis by G-banding showing numerical aberration in the form of trisomy 8, 21	140
27	Conventional cytogenetic analysis by G-banding (case No. 10) showing complex karyotype in the form of t(9;22)(q34;q11) rearrangement and trisomy 15, 19, 17, 4, 21	140
28	Conventional cytogenetic analysis by G-banding showing numerical aberration in the form of trisomy 12	141