Chemotherapy versus Chemo radiotherapy in Treatment of Locally Advanced Pancreatic Cancer

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical Oncology

By

Lobna Salah Mohammed

M.B.B.Ch

Supervised By

Prof. Ali Mohammed Azmy

Professor of Clinical Oncology and Nuclear Medicine. Faculty of Medicine, Ain Shams University.

Dr. Nagi Samy Gobran

Assist. Prof. of Clinical Oncology and Nuclear Medicine. Faculty of Medicine, Ain Shams University.

Dr. Mohammed Essam Saleh

Lecturer of Clinical Oncology and Nuclear Medicine. Faculty of Medicine, Ain Shams University.

Faculty of Medicine
Ain Shams University
2018

Contents

Title Page	
List of Abbreviations	I
List of Tables	IV
List of Figures	VI
Introduction	1
Aim of the Work	3
Review of literature	
- Chapter (1): Anatomical Consiederations	4
- Chapter (2): Epidemiology and Risk factors	9
- Chapter (3): Pathology of Pancreatic Cancer	16
- Chapter (4): Clinical Picture and Diagnosis of	
Pancreatic Cancer	19
- Chapter (5): Staging of Pancreatic Cancer	33
-Chapter (6): Management of Locally Advanced	
Pancreatic Adenocarcinoma	35
Patients and methods	57
Results	65
Discussion	80
Summary and Conclusion	89
Recommendations	90
References	91
Arabic Summary	1

List of Abbreviations

AJCCO: American Joint Committee of Cancer

BRCA 1 : Breast cancer 1

BRCA 2 : Breast cancer 2

CA19-9 : Carbohydrate antigen

CBD : Common bile duct

CDA : Cytidine deaminase

CEA : Carcino embryonic antigen

CI : Confidence interval

CK: : Deoxycytidine kinase

CNT: Human concentrative nucleoside

CR : Complete response

CRT : Chemo radiotherapy

CT : Computed tomography

DM : Diabetes mellitus

DNA : Deoxyribonucleic acid

EBRT : External beam radiotherapy

ECOG : Eastern cooperative oncology

EGFR : Epidermal growth factor receptor

ENT : Human equilibrative nucleoside transporter

ERCP: Endoscopic retrograde

cholangiopancreatography

EUS : Endoscopic ultrasonography

FDR : Fixed dose rate

FNAC: Fine needle aspiration cytology

GEM : Gemcitabine

GIT : Gastro intestinal tract

H and E: Hematoxylin and eosin

HR : Hazards ratio

IORT : Intraoperative radiotherapy

IPMN: : Intraductal papillary mucinous neoplasm

IRE : Irreversible electroporation

IV : Intravenous

KPS: Karnofsky Performance Status

LAPAC: Locally advanced pancreatic adenocarcinoma

LAPC: Locally advanced pancreatic cancer

MDCT : Multidetector computed tomography

MHz : Mega hertez

MRCP: Magnetic resonance cholangiopancreatography

MRI : Magnetic resonance imaging

MSH : Melanocyte stimulating hormone

MTD : Maximum tolerated dose

NCIC: National cancer inistitute committee

NCRP : National Cancer Registry Program

ORR : Overall response

OV : Overall response

PC : Pancreatic cancer

PD : Progressive disease

PDAC: Pancreatic duct adenocarcinoma

PET : Positron emission tomography

PFS : Progression free survival

PP : Pancreatic polypeptide

PR : Partial response

PS : Performance status

PV : Portal vein

QUL : Quality of life

RILD: Radiation induced liver disease

RNA : Ribonucleic acid

RR : Response rate

SD : Stable disease

SE : Standard error

SMV : Superior mesenteric vein

TNM: Tumor, nodes, metastasis

TUS: Transcutaneous ultrasonography

US : United states

WHO: World health organization

3D : Three dimensional

5-FU : 5-flurouracil

List of Tables

Table	Title	Page
(1)	Genetic Syndromes and Gene Alterations	13
	Associated with Familial Pancreatic Cancer.	
(2)	Medical College of Wisconsin CT-based	34
	staging of pancreatic cancer.	
(3)	Comparison between patients with	66
	chemotherapy only and concomitant chemo-	
	radio therapy regarding demographic data,	
	pathology and performance status.	
(4)	Comparison between patients with	69
	chemotherapy only and concomitant chemo-	
	radio therapy regarding response to	
	treatment.	
(5)	Comparison between patients with	71
	chemotherapy only and concomitant chemo	
	radiotherapy regarding pattern of disease	
	progression.	
(6)	Comparison between patients with	72
	chemotherapy only and concomitant chemo-	
	radio therapy regarding PFS and OS	
	(months).	
(7)	Comparison between patients with	75
	chemotherapy only and concomitant chemo-	
	radio therapy regarding overall survival	
	(months).	

Table	Title	Page
(8)	Comparison between patients with	77
	chemotherapy only and concomitant chemo-	
	radio therapy regarding progression free	
	survival (months).	
(9)	Comparison between patients with	79
	chemotherapy only and concomitant chemo-	
	radio therapy regarding toxicity.	

List of Figures

Fig.	Title	Page
(1)	Anatomic relationships of the pancreas with	4
	surrounding organs and structures.	
(2)	The arterial blood supply of the pancreas.	5
(3)	Lymph nodes draining the pancreas.	6
(4)	Acinar tissue, adult human pancreas (H and E).	7
(5)	Main pancreatic duct, human.	8
(6)	Pathological findings of a pancreatic ductal	18
	adenocarcinoma.	
(7)	Computerized tomographic scan showing a	26
	pancreatic adenocarcinoma of the pancreatic	
	head.	
(8)	Endoscopic ultrasound of 2.2cm pancreatic	29
	adenocarcinoma of the head of pancreas.	
(9)	Pancreatic cancer. Cytological samples from	32
	fine-needle aspirations of pancreatic	
(1.5)	adenocarcinoma.	
(10)	Comparison between patients with chemotherapy	67
	only and concomitant chemo-radio therapy	
(11)	regarding sex.	<i>(</i> 7
(11)	Comparison between patients with chemotherapy	67
	only and concomitant chemo-radio therapy	
(10)	regarding age.	C 0
(12)	Comparison between patients with chemotherapy	68
	only and concomitant chemo-radio therapy	
	regarding performance status.	

Fig.	Title	Page
(13)	Comparison between patients with chemotherapy	70
	only and concomitant chemo-radio therapy	
	regarding response to treatment.	
(14)	Comparison between patients with chemotherapy	72
	only and concomitant chemo radiotherapy	
	regarding pattern of disease progression.	
(15)	Kaplan-Meier analysis of overall survival (OS) in	73
	all cases.	
(16)	The survival curves of patients treated with	74
	chemotherapy alone (blue lines) and concomitant	
	chemo radiotherapy (green lines) are shown.	
(17)	Kaplan-Mayer analysis for progression free	76
	survival in all the studied patients.	
(18)	The survival PFS of patients treated with	77
	chemotherapy alone (blue lines) and concomitant	
	chemo radiotherapy (green lines) are shown.	
(19)	Comparison between patients with chemotherapy	79
	only and concomitant chemo-radio therapy	
	regarding toxicity.	

Abstract

Background: Pancreatic cancer is one of the most aggressive solid malignancies. It remains the fourth leading cause of cancerrelated deaths in the modern world, mainly because of dismal diagnosis. In the last decades, significant improvements have been achieved in the screening and therapy of different solid cancers. However, the mortality rate has not experienced significant revision over the last few decades. The five-year survival rate remains just around 5-7% and one-year survival is achieved in less than 20% of cases. Aim: The study is conducted a retrospective analysis for patients with locally advanced pancreatic adenocarcinoma who were treated with chemotherapy alone or who were treated with concomitant chemo radiotherapy as regards treatment response, survival rates and toxicity. Subjects and Methods: This is a retrospective study that include thirty-six patients with cytological/ histological evidence of locally advanced PAC, presented to Ain Shams University hospital during the period from 1st of January 2011 till 31th of December 2016 and fulfilling the inclusion criteria, where twenty-one patients treated with chemotherapy alone compared to fifteen patients treated with concomitant chemo radiotherapy and all were treated from pancreatic cancer at Ain Shams University hospital, obtained from filing system from January of 2011 till December 2016 and had comparable characteristics. **Conclusion:** In conclusion, among patients with locally advanced pancreatic adenocarcinoma, there was no significant difference in overall survival and progression free survival with chemo compared with chemotherapy radiotherapy Recommendations: In both groups of the study, the survival data and toxicity were comparable. So, addition of radiation to chemotherapy seemingly unfruitful. However, due to low number of patients with such study and treatment protocol, it is recommended to include more patients, possibly more cancer centers to reach more statistically significant number for reliable data.

Keywords: Carbohydrate antigen , Human equilibrative nucleoside transporter , Transcutaneous ultrasonography

Introduction

Pancreatic cancer is one of the most aggressive solid malignancies. It remains the fourth leading cause of cancer-related deaths in the modern world, mainly because of dismal diagnosis (**Garrido-Laguna I and Hidalgo M., 2015**). In the last decades, significant improvements have been achieved in the screening and therapy of different solid cancers. However, the mortality rate has not experienced significant revision over the last few decades. The five-year survival rate remains just around 5–7% and one-year survival is achieved in less than 20% of cases (**Vincent A et al., 2011**).

The incidence of carcinoma of the pancreas has markedly increased over the past several decades. Despite the high mortality rate associated with pancreatic cancer, its etiology is poorly understood (van den Bosch et al., 1994). In Egypt, cancer pancreas represents about 2.31% of all cancer cases among males and about 1.41% among females during the period from 2008-2011 according to The National Cancer Registry Program (NCRP) (Ibrahim et al., 2014).

Among distinct pancreatic malignancies, PDAC (whose name is derived from its histological resemblance to ductal cells), is the most common pancreatic neoplasm and accounts for more than 85% of pancreatic cancer cases (**Hezel s et al., 2006**).

There are usually no symptoms in the disease's early stages, and symptoms that are specific enough to suggest pancreatic cancer typically do not develop until the disease has reached an advanced stage (**Ryan et al., 2014**).

Pancreatic cancer remains a highly lethal malignancy despite advances in treatment. At initial diagnosis, 50% of

patients present with metastatic disease, 30% present with a locally advanced tumor, and only 20% are resectable. Surgical resection remains the only potentially curative therapy. The large number of recurrences and/or distant failures following resection suggests that microscopic metastases continue to be an obstacle to better outcomes. Patterns of spread include direct extension, lymphatic spread to regional lymph nodes, and hematogenous spread to distant sites (**Jemal et al., 2009**).

The standard treatment for LAPC has been chemotherapy or chemo radiation therapy (**Loehrer et al., 2011, 2015**). Recently, powerful regimens, such as FOLFIRINOX or gemcitabine with nab-paclitaxel, have demonstrated a high response rate for metastatic PC (*Ueno*, **Okusaka et al., 2016, 2014**).

In particular, FOLFIRINOX has been used as a neoadjuvant treatment for LAPC, resulting in a high conversion rate to surgical resection by improving tumor shrinkage (**Nitsche et al., 2015, 2016**). Only the curative treatment for PC is surgical resection; therefore, treatment resulting for conversion surgery was an effective treatment strategy (**Satoi et al., 2013**).

Aim of the Work

The study is conducted a retrospective analysis for patients with locally advanced pancreatic adenocarcinoma who were treated with chemotherapy alone or who were treated with concomitant chemo radiotherapy as regards treatment response, survival rates and toxicity. At Ain Shams clinical oncology department during the period from 1st January 2011 to 31th December 2016.

Anatomical Considerations

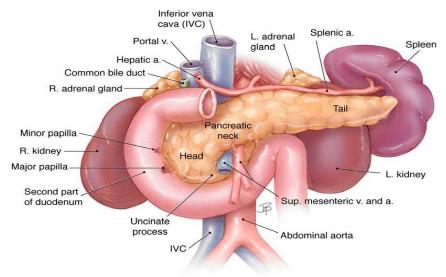


Fig. (1): Anatomic relationships of the pancreas with surrounding organs and structures (Hruban et al., 2007)

- The head of the pancreas lies in the loop of the duodenum as it exits the stomach.
- The tail of the pancreas lies near the hilum of the spleen.
- The body of the pancreas lies posterior to the distal portion of the stomach between the tail.
- The portion of the pancreas that lies anterior to the aorta is somewhat thinner than the adjacent portions of the head and body of the pancreas. This region is sometimes designated as the neck of the pancreas and marks the junction of the head and body.
- The close proximity of the neck of the pancreas to major blood vessels posteriorly including the superior mesenteric artery, superior mesenteric-portal vein, inferior vena cava, and aorta limits the option for a wide surgical margin when pancreatectomy (surgical removal of the pancreas) is done.
- The common bile duct passes through the head of the pancreas to join the main duct of the pancreas near the duodenum. The portion nearest the liver lies in a groove on the dorsal aspect of the head.
- * The minor papilla where the accessory pancreatic duct drains into the duodenum and the major papilla (ampulla of Vater) where the main pancreatic duct enters the duodenum are depicted.

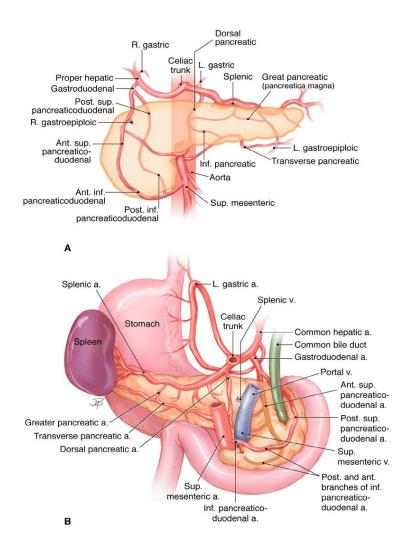


Fig (2): The arterial blood supply of the pancreas: (**Hruban et al.**, **2007**)

The upper panel (A) is visualized from the front, and the lower panel (B) is seen from the back. The celiac trunk and the superior mesenteric artery both arise from the abdominal aorta. Both have multiple branches that supply several organs including the pancreas. The anastomosis of their branches around the pancreas provides collateral circulation that generally assures a secure arterial supply to the pancreas. Most of the arteries are accompanied by veins (not shown) that drain into the portal and splenic veins as they pass behind the pancreas as shown in B. The superior mesenteric vein becomes the portal vein when it joins the splenic vein.