OVARIAN CANCER PATTERN AT NEMROCK DURING THE PERIOD 2005-2011

THESIS

Submitted for fulfillment of M.Sc. Degree in Clinical Oncology

By

Ahmad Elsayed Morsy

(BCh.2005) Faculty of Medicine, Cairo University

Under supervision of

Prof. Emad Hamada

Professor of Clinical Oncology Faculty of medicine Cairo University

Prof. Emad Ezzat

Professor of clinical Oncology Faculty of Medicine Cairo University

Ass. Prof. Raafat Ragaie

Assistant Professor of Clinical Oncology Faculty of Medicine Cairo University

Faculty of Medicine - Cairo University

2014

Acknowledgment

First, before all, thanks be to GOD this work has been accomplished.

I would like to express my sincere gratitude and profound thanks to My Professors at Nemrock Centre of Clinical Oncology and Nuclear Medicine

I would like to express my gratitude to all those who have contributed to this work. First, I should grant my deepest appreciation and sincere thanks to **Prof. Dr. Emad Hamada** Professor of Clinical Oncology, Cairo University for his supervision and support throughout my study.

This thesis would not have been possible without the help, support and patience of my supervisor, **Prof.Emad Eazzat**

My sincere and special thanks to **Dr.Raafat Ragaie** for his great help, continuous assistance, invaluable encouragement, guidance, and comments in the writing of this thesis.

Special thanks to my Mentor **Professor Yasser Abdel Kader and Professor Hamdy Abdel Azim** for their great and remarkable effect on my career and my personality

My deepest thanks are sincerely offered to all my supervisors and colleagues for their encouraging attitude, their great help and their patience all through my thesis.

I would also like to thank my family, lastly, my deepest thanks are extended to my patients.

Abstract:

Purpose:

This is a retrospective study trying to assess the management of patients suffering from Ovarian cancer in clinical oncology and Nuclear Medicine cancer center Cairo University and use the international standard of care as reference.

Patients:

Female patients between the ages of 18-80 yrs. Baseline Hematological, Renal and Liver laboratory profiles were within accepted ranges. Patients were surgically fit to undergo radical surgery. Patients had to be ECOG Performance status 0-2 to start chemotherapy Patients will pathologically proven Ovarian Cancer and records showed follow-up for at least 6 months. Women who stopped their treatment for non-medical reasons (social or psychological or financial). Were excluded .Any records of other malignancy at other sites were excluded from this analysis.

Methodology:

Records were evaluated to answer if the patient underwent Radical surgery, received adjuvant systemic treatment, the type of chemotherapy, duration of the adjuvant treatment and the period between last cycle od adjuvant and any disease relapse. For metastatic patients; what type of chemotherapy used as first line and its response, second line and its response and if third was given. Also the study assess the common drug related toxicities and the quality of life for the patients.

Results:

DFS period is calculated as the interval through the first Progression after receiving primary treatment. Progression was detected clinically and/or radiologically, after receiving adjuvant Chemotherapy.

OS period is measured as the interval between the date of histo-pathological confirmation of disease (either Radical surgery or biopsies) and death or date of the last follow-up evaluation.

Conclusion:

We found that in EOC subtype the patients are almost a decade younger than western patients. The results of DFS and OS were comparable to the international statistics. There is no clear guidelines for second line protocols. Limited financial resources did not affect the management of patients concerning radical surgery and adjuvant therapy.

Key words:

Ovarian Cancer, Optimal Surgery, Epithelial type, Non Epithelial type, Disease free survival Overall survival, NEMROCK, Cairo University.

List of Contents

List of tables		
List of figures.		
List of abbreviations		
Introduction	on and Aim of Work	12
Review of literature		
I)	Risk factors and Genetics.	16
II)	Pathology and Pathogenesis.	27
III)	Diagnosis	40
IV)	Treatment	53
V)	Biologicals in the Upfront Treatment of Ovarian Cancer	68
VI)	Non-Epithelial	76
Patients and Methods		
Results9		94
Discussion.		112
Conclusion and Recommendations		119
Summary .		122
References	3	125
Appendix		
نص العربي	الملخ	180

List of Tables

Table 1	WHO classification of malignant ovarian tumours	30
Table 2	FIGO Stage grouping for primary carcinoma of the ovary	45
Table 3	Age – Pathological Subtypes	96
Table 4	Disease Presentation – Pathological Subtypes	98
Table 5	Staging – Pathological Subtype	100
Table 6	Resection – Pathological Types	101
Table 7	Tumor Marker data for EOC	102
Table 8	Relapse Disease	103
Table 9	Platinum sensitivity for EOC	103
Table 10	Platinum sensitive	104
Table 11	Factors affecting DFS	106
Table 12	5yrs OS by Pathological Subtype	110

List of Figures

Figure (1)	Serous ovarian adenocarcinoma, high grade	32
Figure (2)	Serous ovarian adenocarcinoma, low grade	33
Figure (3)	Mucinous ovarian adenocarcinoma, borderline	33
Figure (4)	Endometrioid ovarian adenocarcinoma, well differentiated	35
Figure (5)	Endometrioid ovarian adenocarcinoma, high grade	35
Figure (6)	Clear cell ovarian adenocarcinoma, solid pattern	37
Figure (7)	Clear cell ovarian adenocarcinoma, papillary pattern	37
Figure (8)	Ovarian cancer spread pattern	39
Figure (9)	Derivation of optimum discriminatory biomarker sets	50
Figure (10)	Progression-free survival of patients in a phase II randomized placebo-controlled trial of olaparib monotherapy as maintenance treatment for patients with relapsed platinum-sensitive serous ovarian cancer. Reprinted with permission	75
Figure (11)	Overall Patients	95
Figure (12)	Pathological Subtypes by Percentage	96
Figure (13)	Age – Pathological Subtypes	97
Figure (14)	Age - Pathological Subtypes per percentage	97
Figure (15)	Disease Presentation by Percentage	98
Figure (16)	Disease Presentation – Pathological Subtypes	99
Figure (17)	Staging by Percentage	99
Figure (18)	Staging – Pathological Subtype	100
Figure (19)	Resection by Percentage	101
Figure (20)	Resection – Pathological Types	101

Figure (21)	Tumor Marker Ca125 analysis	102
Figure (22)	Relapsed Disease by Percentage	103
Figure (23)	Platinum sensitivity for EOC	104
Figure (24)	Platinum sensitive	104
Figure (25)	Disease Free Survival	105
Figure (26)	Disease Free Survival according to pathological subtypes	105
Figure (27)	DFS among pts with Epithelial Tumors according to age	107
Figure (28)	DFS among pts with Epith tumors according to Grade	108
Figure (29)	DFS among pts with Epithelial tumors according to Resection	109
Figure (30)	Overall survival	110
Figure (31)	Overall survival according to the Pathological Subtype	111

List of Abbreviations

ADL Activities of daily living

AUC Area under the curve

BRCA Breast cancer gene

CI Confidence Interval

CT Computed Tomography

DFS Disease Free Survival

ECOG Eastern Cooperative Oncology Group

EOC Epithelial Ovarian Carcinoma

EORTC European Organization for Research and Treatment of Cancer

ER Estrogen receptor gene

FIGO International Federation of Gynecologists and Obstetricians

GOG Gynecologic Oncology Group

HNF-1b Hepatocyte nuclear factor – 1b gene

HNPCC Hereditary Non-Polyposis Colorectal Cancer

HRT Hormonal Replacement Therapy

ICON International Collaborative Ovarian Neoplasm Trial

LMP Tumors of Low Malignant Potential

MUC-1 Mucin - 1

NEMROCK Kasr El Einy Centre of Clinical Oncology and Nuclear Medicine

OCP Oral contraceptive pills

OR Odds Ratio

OS Overall Survival

PAC Cisplatin – Doxorubicin – Cyclophosphamide regimen

PBSO Prophylactic bilateral salpingo-oopherectomy

PCOS Polycystic ovarian syndrome

PET Positron Emission Tomography

PFS Progression Free Survival

PPV Positive Predictive Value

SLL Second look laparotomy

SWOG Southwest Oncology Group

TPN Total parenteral nutrition

TVS Trans-vaginal Ultrasonography

VEGF Vascular Endothelial Growth Factor

WHO World Health Organisation

WT-1 Wilm's tumour – 1 gene

b-hCG b-human chorionic gonadotropin

AFP a-fetoprotein

LDH lactate dehydrogenase

PS performance status

PMB postmenopausal bleeding

AMH anti-Mullerian hormone

Introduction & Aim of Work

Introduction and aim of work

Despite the fact that it is a highly curable disease if diagnosed early, cancer of the ovaries causes more mortality in women each year than all other gynecologic malignancies combined.

In the United States, ovarian cancer is the 5th most common cause of cancer related death, and it's the 4th leading cause of cancer death in women between the age of 40-59. The lifetime risk of developing ovarian cancer is approximately 1.3%, although patients with a familial predisposition have a much higher lifetime risk, in the range of 10% to 40%.(ASCO facts and figures sheet, 2015).

Worldwide there are 225,500 new cases each year with 140,200 of ovarian cancer related deaths per year.

In Egypt, based on Gharbeya Population Cancer Registry, ovarian cancer represents around 3.7% of female cancer cases. (**BGICC abstracts 2010**).

Ovarian cancer is primarily a disease of postmenopausal women, with the large majority of cases occurring in women between 50 and 75 years old with a median age at diagnosis of 63 years. The incidence of ovarian cancer increases with age and peaks at a rate of 61.5 per 100,000 women in the 75–79 year old age group. (EUCAN fact sheet,2012).

There are distinct geographic variations in the incidence of ovarian cancer, with the highest rates found in the industrialized countries and the lowest rates seen in underdeveloped nations. Japan, with an incidence of only about 3.0 per 100,000 population, is a notable exception to this observation. It has been postulated that geographic variations in the incidence of ovarian cancer are related, in part, to differences in family size. (**EUCAN fact sheet,2012**).

Introduction and Aim of Work

During the past 30 years, survival has increased owing to improvement in diagnosis, surgery and systemic therapy. Despite these advances, most patients will die from the disease, and the overall 5-year survival is around 50%.(ASCO facts and figures sheet, 2015).

This Work aim to assess the clinico-pathological nature of Ovarian Cancer Cases presented at NEMROCK and assess the optimization of surgery and the response of different Chemotherapy protocols and their toxicities. We will be reviewing the management and follow up of patients from 2005-2011 and conclude our institute strength and weakness to reach a recommendation that might help improve the patients quality of life.

R eview of Literature

Risk factors & Genetics

R eview of Literature

Chapter I Risk Factors & Genetics