

The Role of Multislice Computed Tomography Coronary Angiography in Detection of Culprit Lesion Morphology in Acute Coronary Syndrome

Thesis

Submitted for partial fulfillment of Master degree in Critical Care Medicine

By

Mohamed Bassem Mohamed Aly (M.B.B.CH.)

Supervisors

Prof. Dr./ Hassan Khaled, MD

Professor of Critical Care Medicine Faculty of Medicine - Cairo University

Dr./ Ahmed Hossam Mowafi, MD

Assistant Professor of Critical Care Medicine Faculty of Medicine - Cairo University

Dr./ Mohamed Abo Hamila, MD

Lecturer of Critical Care Medicine
Faculty of Medicine - Bany Souief University

Faculty of Medicine
Cairo University
-2012-

ACKNOWLEDGEMENT

Thanks are given to **GOD** the source of all knowledge, by whose great aid this work has come to fruition. A gratitude to all those who assisted and guided me throughout the duration of the work, I extend to them my sincere thanks and gratitude.

I wish to express my sincere appreciation and thanks to my supervisors .It has been a great honor to proceed this work under the supervision of *Prof./Hassan khaled*, Professor of Critical Care medicine, Faculty of Medicine, Cairo University. I am greatly indebted to him for suggesting and planning the subject, his continuous supervision and support that made the work possible and come in this form.

I would like also to express my sincere gratitude and appreciation to *Prof./Ahmed Hossam Mowafi* Assistant Professor of Critical Care medicine, Faculty of Medicine, Cairo University, for his continuous support, and careful guidance. Also I would like to express my appreciations to *Dr/Mohamed Abo Hamila* Lecturer of Critical Care medicine, Faculty of Medicine, Bany Souief University, for his sound advices and support. And my great thanks to *Dr./Mohamed Abd Elkader* Lecturer of Cardiology Department, Faculty of Medicine, Ain Shams university for his sincere help.

A special thanks for the discussion committee for accepting discussing this research for their valuable discussion and sincere advices. Also my thanks is extended to *Dr.Sayed Abd Elhafez*, *Dr.Alaa Hataba* and *Dr. Khalid Shokry* and to my colleges the stuff members of Cardiology department in kobri Elkobba military hospital for their sincere help ,support and encouragement throughout the work.

Last but not least I wish to express my deep appreciation, love and thanks to my beloved family for their continuous encouragement, support and help not only throughout the research but through my whole life. Again I am extremely grateful to my father who has been a significant supporter to me, God bless them all.

DEDICATION

To My Mother soul And to my beloved son

Abstract

Multislice computed tomography appears to provide high accuracy for detecting coronary artery disease and may represent a useful complement to conventional coronary angiography. Conventional invasive coronary angiography is currently the diagnostic standard for clinical evaluation of known or suspected coronary artery disease (CAD). The risk of adverse events is small, but serious and potentially life-threatening events may occur, including arrhythmia, stroke, coronary artery dissection, and access site bleeding

The purpose of our study was to assess the usefulness of dual source 128-slice definition flash CTCA for assessment of the culprit lesion morphology versus coronary angiography in patients with acute coronary syndrome.

Key Words:

Coronary care unit - Calcium scoring - Stable angina .

CONTENTS

Subject	Page
List of Tables	Ш
List of Figures	V
List of Abbreviations	VIII
Introduction	1
Aim of work	5
Part one: Literature Review	6
Chapter One: Acute Coronary Syndrome	6
Definition of Acute Coronary Syndrome	6
Classification of Acute Coronary Syndrome	7
Epidemiology of Acute Coronary Syndrome	9
Pathphysiology	9
Diagnosis and risk assessment of ACS	14
Diagnostic tools	16
Recommendations for diagnosis and risk stratification of ACS-	00
NSTE	20 21
Initial diagnosis and early risk stratification of ACS-(STEMI)Risk stratification of ACS	21 23
Coronary revascularization	23 31
Invasive versus conservative approach	31
Timing of angiography and intervention	33
Chapter Two: Computed tomographic overview	36
Computed tomographic overview	36
Evolution of Spiral CT	37
Development of Multi-Slice CT	38
History of CT Cardiac Imaging	41
Challenges for performing cardiac CT scanning	42
CT Angiography of the Cardiac Anatomy and Coronary Arteries	47
Basic Performance Requirements for CT Imaging of the Heart	48
Multi-segment Reconstruction	49 57
Contrast Media Injection	57 58
Image Visualization and post processing techniques	59
Non-coronary Applications of Cardiac Multidetector	63
Future developments and outlook	67
Chapter Three: Applications of multislice coronary	
computed tomographic angiography to percutaneous	
coronary intervention	68
Introduction	68
MSCT Angiography in ACS	70
Coronary calcium scoring	70
Plaque morphology	71
Characterization of atherosclerotic plaques	73
Identification of significant lesions	82
Prognostic value of MSCT angiography in CAD	87

Subject	Page
Functional evaluation of MSCT angiography in CAD	87
Limitations of Angiography in CAD	88
Limitations of MSCT in calcium scoring	89
Procedure planning	90
Plaque Evaluations and identification of High-Risk Lesions	92
Part two: Patients and Methods	96
Part three: Results and discussion	
Chapter four: Results	102
Chapter five: Discussion	119
Summary	128
Limitations	130
Conclusions	131
Recommendations	132
References	133
Appendix	
Arabic Summary	

LIST OF TABLES

Table no.	Subject	Page
1	ACC/AHA system for risk stratification of patients with UA	24
2	Rizik classification system	2 4 25
3	TIMI risk score	26
4	Criteria for high risk with indication for invasive management	34
5	scan and reconstruction parameters	67
6	PCI Areas of CTA Impact	68
7	Coronary Calcium Scoring	72
8	The percentage of different cardiovascular risk factor among the studied population	102
9	Presentation	102
10	Comparison of MSCT CA in different acute coronary syndrome groups	103
11	CPK-TOTAL in different ACS groups	103
12	Relation of troponin to Calcuim score , volume of plaque and density of non calcified plaque	104
13	Time of imaging	104
14	Comparison between MSCT CA and CA as regards vessel affected	104
15	Comparison between MSCT CA and CA as regards severity of Stenosis of the lesion	105
16	Relation between risk factors and severity of Stenosis of coronary lesion by MSCT CA	106
17	Relation between presentation of different acute coronary groups and severity of Stenosis of coronary lesion by MSCTCA	107
18	Relation between treponin and severity of Stenosis of coronary lesion by MSCTCA	107
19	Comparison between MSCTCA and CA as regards calcification	108
20	Comparison between MSCTCA and CA as regards length of culprit lesion	109
21	comparison between MSCTCA and CA as regards concentric/eccentric lesion	110
22	Comparison between MSCTCA and CA as regards tortuousity	111
23	Comparison between MSCTCA and CA as regards ulceration \ldots	111
24	Calcium score BY MSCTA	112
25	Correlation between calcium score and lesion characteristics	112
26	Volume of plaque BY MSCTA	113

Table no.	Subject	Page
27	Positive remodeling by MSCTA	113
28	Density of non calcified plaque by MSCTA	113
29	TIMI flow by CA	113
30	Thrombus BY CA	114
31	The relation between HTN and calcium score, volume of plaque and density of non calcified plaque	114
32	The relation between DM and calcium score, volume of plaque and density of non calcified plaque	114
33	The relation between Smoking and calcium score, volume of plaque and density of non calcified plaque	115
34	The relation between dyslipidemia and calcium score, volume of plaque and density of non calcified plaque	115
35	The relation between Family history and calcium score, volume of plaque and density of non calcified plaque	115

LIST OF FIGURES

Fig. no.	Subject	Page
1	The spectrum of acute coronary syndromes	8
2 3	The vulnerable plaque and consequences of plaque rupture Suggested algorithm for protocol in evaluation of ACS patients	11
	in the emergency department	29
4	Suggested algorithm for CCTA based protocol in evaluation of acute chest pain patients in the emergency department	30
5	Somatom Definition Flash	40
6	The burden of coronary artery disease	44
7	3VD, Three-vessel disease	46
8	Contrast-enhanced CT of the mediastinum in a patient with	
	aortic dissection	51
9	Simplified representation of a CT scanner	51
10	Hyper-attenuating cylinder is scanned in the transverse plane	51
11	Positioning the reconstruction time window	52
12	End-diastolic positioning of temporal windows	53
13	Three-dimensional reconstruction with volume rendering algorithm of a table-tennis ball	55
14	Geometry of a CT scanner	56
15	Retrospective ECG gating vs. prospective ECG triggering	56
16	Baseline ECG in MDCT coronary angiography	57
17	Injection Protocols	59
18	Curved planar reformatted image acquired with 128-slice CT angiography shows a non-calcified plaque at the mid-segment of the right coronary artery	72
19	Curved planar reformatted image acquired with a dual-source	12
13	CT angiography	72
20	Endothehelial dysfunction	74
21	Degree of stenosis	75
22	Visualization of coronary atherosclerotic plaque by 128-slice computed tomography (CT)	76
23	Concentric lesion	77
24	CTA Morphology of Ulcerated Plaques Found During Angiography and Confirmed With IVUS	77
25	Curved planar reformatted image acquired with a dual-source CT angiography shows a mixed type of calcified plaque at the mid-segment of the right coronary artery	78
26	Focally calcified plaque and extensively calcified plaque	78

Fig. no.	Subject	Page
27	CT Plaque Analysis window demonstrating plaque finding in the proximal most section of RCA	79
28 29	CT volume rendering demonstrating sub-occlusion in the LAD Curved multiplanar reconstruction demonstrating sub-occlusion on the LAD	79
30	Invasive angiogram shows stenosis (arrow) of left main artery (LMA) and indicates noncalcified lesion	79 80
31	MDCT shows noncalcified plaque	81
32 33	Curved multiplanar reconstructed CT image of LMA Cross-sectional view of noncalcified plaque obtained by 128-MDCT shows eccentric noncalcified plaque	81 81
34	Same cross-sectional view of noncalcified plaque with color obtained by CT software.	82
35	CTA guided PCI paradigm	84
36 37	Normal patent proximal and mid right coronary artery stents CTA curved multiplanar reconstruction of the left anterior	84
	descending coronary artery	85
38	CTA curved MPR of the LAD	85
39 40	CTA curved MPR revealed severe mid RCA stenosis CTA curved MPR demonstrated significant LM and ostial LCx disease less apparent on the subsequent CA	86 86
41	Subtotal LAD occlusion on the CTA and on the CA	91
42	CTA revealed severe ostial stenosis	94
43	Selective angiography demonstrated flush occlusion of the LAD with partial collateral filling from the RCA	95
44	Comparison between MSCT CA and CA as regards vessel affected	105
45	Comparison between MSCT CA and CA as regards severity of Stenosis of the lesion	106
46	Comparison between MSCTCA and CA as regards calcification	108
47	Comparison between MSCTCA and CA as regards length of culprit lesion	109
48	Comparison between MSCTCA and CA as regards concentric/ eccentric lesion	110
49	Comparison between MSCTCA and CA as regards tortuousity	111
50 51	Comparison between MSCTCA and CA as regards ulceration Curved planar reformatted image acquired with 128-slice CT	112
	angiography shows mid segmental LAD lesion	116

Fig. no.	Subject	Page
52	Coronary angiography shows mid segmental LAD lesion	116
53	Curved planar reformatted image acquired with 128-slice CT angiography shows long mid segmental lesion of LAD	117
54	Coronary angiography shows long mid segmental lesion of RCA	117
55	Curved planar reformatted image acquired with 128-slice CT angiography shows proximal LAD lesion	
		117
56	Coronary angiography shows total occluded RCA	118

LIST OF ABBREVIATIONS

ACC American college of cardiology

ACS Acute coronary syndrome
AHA American Heart Association

ALB Albumin

ALT Alanine Aminotransferase
AMI Acute myocardial infarction
BNP Brain-type natriuretic peptide
CABG Coronary by pass graft surgery

CAD Coronary artery disease

CCS Canadian cardiovascular society

CCTA Coronary computed tomography angiography

CCU Coronary care unit
CD40L CD 40 ligand
CK Creatine kinase

CK MB Creatine kinase MB fraction

CrCI Creatinine clearance
CRP C- reactive protein

CRT Cardiac resynchronization therapy

CS Calcium scoring

CT Computed tomography
Ctnl Cardiac tropnin I
CTnT Cardiac troponin T

%DS Percent diameter stenosis

EBCT Electron beam c t
ECG Electrocardiogram
ED Emergency department

E F Ejection fraction

ELISA Enzyme linked immunsorbant assay
ESC European society of cardiology

FFR Fractional flow reserve
GFR Glomerular filtration rate
GP Glycogen phosphorylase
HAS Human serum albumin

HDL-C High density lipoprotein-cholesterol HS CRP High sensitivity C-reactive protein

H U Hounsfield units

ICTUS Invasive versus conservative treatement in unstable coronary

syndrome

IHD Ischemic heart disease

IL-6 Interleukin – 6

IVUS Intravascular ultrasound

LAD Left anterior descending artery
LCX Left circumflex coronary artery
Lactate dehydroogenase

Lactate denydroogenase

Left main coronary artery

LV Left ventricle

MIP Maximum intensity projections

MLA Minimum luminal area

MLD Minimum luminal diameters
 MPR Multi planar reformations
 MRI Magnetic resonance imaging
 MSCT Multi slice computed tomography

NSTEACS Non ST elevation acute coronary syndrome
NSTEMI Non ST elevation myocardial infarction
PCI Percutaneous coronary intervention

PE Pulmonary embolism

PET Positron emission tomography

PTCA Percutaneous transluminal coronary angioplasty

RCA Right coronary artery

RCTS Randomized intervention trial of unstable angina

RITA Randomized controlled trials

S A Stable angina

SCD40L Soluble CD40 ligand SD Standard deviation

SPECT Stress Single Photon Emission Computed Tomography

STEMI ST elevation myocardial infarction

TCFA Thin cap fibroatheroma

TIMI Thrombolysis in Myocardial Infarction **TIVA** Tomographic intravascular analysis

UA Unstable angina

VRT Volume rendering techniques

INTRODUCTION

Multislice computed tomography appears to provide high accuracy for detecting coronary artery disease and may represent a useful complement to conventional coronary angiography. Conventional invasive coronary angiography is currently the diagnostic standard for clinical evaluation of known or suspected coronary artery disease (CAD). The risk of adverse events is small, but serious and potentially life-threatening events may occur, including arrhythmia, stroke, coronary artery dissection, and access site bleeding (total complication rate, 1.8 percent; death rate, 0.1 percent). (http://www.medicalnewstoday)

Over recent years, multislice computed tomography (MSCT) has matured into a reliable imaging modality for noninvasive evaluation of the coronary arteries. With this technique, the coronary arteries are directly visualized; not only the degree of atherosclerosis but also the degree of stenosis can be evaluated with high accuracy calcium score. Accordingly, the technique may be of interest in the diagnostic work-up of patients presenting with suspected ACS in hospital with cath lab facilities. A particular advantage is the fact that non calcified atherosclerosis is also identified, thus providing a more accurate evaluation of the underlying atherosclerotic plaque burden (*Pryor DB*, *et al.*,1993). However, this is at the cost of contrast administration and a higher radiation dose. At present, data on how the CS relates to observations obtained with MSCT coronary angiography in patients presenting with suspected ACS are scarce.

Multislice computed tomography (MSCT) has been demonstrated to be a promising tool for noninvasive assessment of atherosclerotic plaque burden and composition. An important advantage of MSCT is that the technique not only visualizes luminal narrowing but can also identify atherosclerotic plaque in the arterial vessel wall. Accordingly, in contrast to invasive coronary angiography, lesions that show outward (positive) remodelling without luminal narrowing can also be easily identified. In addition, information on plaque composition can be obtained and lesions can be differentiated into non-calcified, mixed or calcified.

(Martin H K and Hoffmann, M D,) of University Hospital, Ulm, Germany and colleagues assessed the diagnostic accuracy of 16-slice MSCT scanning vs. invasive coronary angiography in a large group of patients with known or suspected CAD. The study, which included 103 patients (average age, 61.5 years), was conducted from November 2003-August 2004. The patients underwent both invasive coronary angiography and MSCT using a scanner with 16 detector rows.

The researchers found that compared with invasive coronary angiography for detection of significant lesions (greater than 50 percent stenosis [narrowing]), segment-based sensitivity, specificity, and positive and negative predictive values of MSCT were 95 percent, 98 percent, 87 percent, and 99 percent, respectively. Quantitative comparison of MSCT and invasive coronary angiography showed good correlation, with MSCT systematically measuring greater-percentage stenoses. Per-patient based analysis indicated high discriminative power to identify patients who might be candidates for revascularization. (http://www.medicalnewstoday)

Examination of the function, perfusion and viability of the heart muscle as well as of the morphology and function of the coronary arteries is of utmost importance in the diagnostic assessment of coronary artery disease. The current gold standard to assess the degree of stenotic artery disease is coronary angiography. In Germany alone, the total number of angiographic procedures rose by 45% from 1995 to 2000, while the fraction of interventional procedures remained almost constantly low at approximately 30%.

Identification of the coronary endoluminal lesion(s) responsible for the process now called acute coronary syndrome (ACS) has become a central focus of both non-invasive and invasive treatment modalities in patients with coronary heart disease. Impressive reductions in cardiovascular mortality seen with lipid lowering agents and angiotensin-converting enzyme inhibitors suggest a critical role for pharmacologic alteration of plaque and vessel wall dynamics.

Increasingly aggressive invasive approaches to the management of patients with coronary heart disease have suggested that catheter-based therapies directed toward a "culprit