Evaluation of The Role of Sutureless Amniotic Membrane in The Management of Ocular Surface and Orbital Disorders

Essay

Submitted for partial fulfillment of Master Degree in Ophthalmology

By Haidy Zakaria El Raii

M.B.,B.Ch.

Supervised by **Prof. Dr. Hany Mohamed El Ibiary**

Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Ass. Prof. Dr. Mona mohamed El Fiky

Assistant Professor of Ophthalmology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University Cairo Y.Y.

I am greatly honored to express my deepest gratitude to **Prof. Dr. Hany Mohamed El Ibiary**, Professor of Ophthalmology, Ain Shams University. He gave me much of his valuable experience, advice and time. His attitude guided all steps of this study. No words of thanks could ever express my feelings towards his extreme support.

I would like to express my deep gratitude to Ass. Prof. Dr. Mona Mohamed El Fiky, Assistant Professor of Ophthalmology, Ain Shams University. She did not hesitate to give me much of her time, effort and support in performing this essay.

Many thanks are own to all the staff members of Ophthalmology Department, Ain Shams University, for their advice, support and encouragement.

The amniotic membrane (AM) is the inner membrane of the placenta that surrounds the fetus in utero and has been used in reconstructive surgery since '9' (*Davis*, 1910). The AM is a biologic tissue with antiangiogenic, antiscarring, antimicrobial and anti-inflammatory properties that promotes healing of the ocular surface (*Kheirkhah et al.*, 2008).

Although the first documented report of living amniotic membrane transplantation (AMT) for an ocular disorder was published by De Roth in 195. (*De Roth, 1940*), little use was seen that used the amniotic membrane for ocular disorders until 1990, when Kim and Tseng (*Kim and Tseng, 1990*) published their results of using cryopreserved amniotic membrane to encourage corneal epithelium regeneration in a rabbit model.

Since then, AM has been increasingly used for ocular surface reconstruction because of its effects of reducing inflammation and maintaining the integrity of the ocular surface (*Fernandes et al.*, 2005).

Currently, AMT has a wide spectrum of ophthalmic clinical applications including ocular surface reconstruction in cases of limbal stem cell deficiency with or without concurrent limbal stem cell transplantation (*Kheirkhah et al., 2008*).

It is also commonly used in the management of non-traumatic corneal perforations, descematoceles, neurotrophic ulcers and persistent epithelial defects caused by a variety of ocular surface diseases (*Khokhar et al., 2005*).

Reconstruction of the conjunctival surface after excision of pterygia or other conjunctival lesions can also be completed using AMT (*Sippel et al.*, 2001). AMT is also used as a

therapeutic bandage contact lens in acute inflammatory conditions and in symptomatic bullous keratopathy (*Gomes et al.*, 2005).

Initially, grafting of the amniotic membrane was solely performed using sutures (*Kheirkhah et al.*, 2008). Running or interrupted sutures for AM patch fixation have a number of complications and drawbacks:

- (a) It is difficult to monitor the epithelialization process.
- (b) Protection is lost if AM patch falls off (Khokhar et al.,
- (c) Removal of the sutures results in reimpairment of the ocular tissue.
- (d) Scar formation persists at least several weeks in the suture sites.
- (e) Recent case reports have shown chronic conjunctival inflammation caused by the retained sutures (*Chung et al.*, 2006).

The emergence of biologic adhesives has made sutureless AM a viable and technically easier alternative that avoids suture-related complications (*Kheirkhah et al.*, 2008).

The advent of sutureless and adhesiveless AM device has been an exciting development in ocular surface and orbital reconstruction (*Kheirkhah et al.*, 2008).

The idea of developing a sutureless approach of AM application is not new. John et al on Y · · · treated a patient with toxic epidermal necrolysis (TEN) with an AM that was applied

around a symblepharon ring and sutured through the anterior eyelid margins (*John et al.*, 2002).

Tseng et al on Y · · · · submitted the design of an AM carrier to the US patent office (*Tseng et al., 2004*). They also presented results with sutureless AM device (*Ijiri et al., 2007 and Kheirkhah et al., 2008*) that is an US food and Drug Administration-approved version called Prokera (Bio- Tissue, Inc., Miami, FL). It is a ring-like plastic ophthalmic conformer, available in two sizes, that incorporates AM between two rims. They reported beneficial effects in patients with acute alkaline burns and partial limbal stem cell deficiency (*Kheirkhah et al., Y · · A*).

Prokera is class II medical device comprised of a cryopreserved amniotic membrane (Amnio Graft) clipped into a polycarbonate ring set. It combines the functionality of a symblepharon ring with the biologic actions of cryopreserved amniotic membrane to create a unique treatment option for corneal and limbal wound management (http://www.Biotissue.com).

Prokera can be easily inserted onto the patient's eye without sutures after instillation of anesthetic eye drops to deliver the needed biological actions for suppressing inflammation and promoting healing, as well as acting as a symblepharon ring (*Kheirkhah et al.*, 2008).

Many patients with corneal epithelial defects, Stevens-Johnson syndrome (SJS) and TEN requiring amniotic membrane overlays are old, handicapped or immobile; housed in retirement homes or in intensive medical care units. Thus they are not easily transported and their medical conditions do

not permit them to be brought to the operating room. Therefore insertion of Prokera allows doctors to perform AMT at the acute stage without delay (Yoshita et al., 2004 and Ijiri et al., Y...).

After insertion, Prokera doesn't interfere with topical medications and permits examination of epithelial healing by fluorescein staining and measurement of intraocular pressure by Tono- Pen (Medtronic Solan, Jacksonville, FL) without being removed from the eye (Yoshita et al., 2004 and Ijiri et al., Y...).

Although ProKera contains AM and has been effective at restoring a clear and normal cornea, it should be noted that the diameter of the ProKera only covers the cornea and perilimbal conjunctiva, not the entire ocular surface as sutured AMT does. Although ProKera helps restore corneal epithelial integrity, it is not effective in preventing cicatricial complications in the fornix, the tarsus, and the lid margin. Therefore, ProKera should be considered only if the patient's medical condition is not amenable to the sutured technique. Development of a sutureless device like ProKera that is large enough to cover the entire ocular surface is warranted considering the high ocular morbidity of SJS/TEN (Shay E et al., 2010).

To evaluate the role of sutureless amniotic membrane in the management of ocular surface and orbital disorders.

(Contents

Contents

List of Abbreviations	ii
List of tables	iii
List of Figures	iv
Introduction and aim of work.	١
Anatomy of the cornea, conjunctiva & precorneal tear film.	٥
Y. Anatomy and histology of the amniotic membrane	١٦
T. Physiological properties of the amniotic membrane	۲.
٤. Uses of amniotic membrane in ophthalmic diseases.	**
c. Sutureless amniotic membrane	٤٣
7. Role of amniotic membrane in the management of	٥٥
ocular surface and orbital disorders V. Summary	٦٩
A. References	٧٢
9 Arabic Summary	_

List of Figures

Fig. No	Description	page	
1-1	Layers of the cornea	٦	
1-7	Histology of the epithelium	٧	
1-4	Histology of the Bowman's layer and the stroma	٨	
1-8	Lamellae of the stroma	٩	
1_0	Endothelial cells	11	
1-7	Normal conjunctival histology	١٢	
1-4	The three layers of the precorneal tear film	١٣	
١-٨	Function of mucin layer	10	
۲-۱	The amniotic membrane	١٦	
7_7	Histologic sample of amniotic membrane	١٧	
۲_٣	Schematic presentation of the structure of the foetal membrane at term.	19	
٤-١	Case presentation with acute Steven Johnson Syndrome	٣.	
٤-٢	At one week after amniotic membrane transplantation	٣1	
٤-٣	Follow up after 6 months	٣1	
٤-٤	Case with acute chemical burn	٣٢	
٤_٥	Case with band keratopathy and persistent corneal epithelial defect	٣٤	
٤-٦	Case with corneal perforation	30	
٤-٧	Three surgical strategies for fornix reconstruction.	٣٦	
٤-٨	Fornix reconstruction after symblepharon lysis and AMT.	٣٧	
٤-9	Case with pterygium	٣9	
٤-١٠	Graft of amniotic membrane	49	
٤-١١	A patient with painful pseudophakic bullous keratopathy	٤٠	
٤-1٢	Leaking trabeculectomy with an amniotic membrane graft	٤١	
0_1	ProKera	٤٤	
0_7	An individualized Illig shell with AM	٤٥	
0_4	The process of PMMA ring fabrication	٤٦	
0_{5	Schematic diagram of sutureless AM as a therapeutic contact lens	٤٧	

List of Figures

Fig. No	Description		
0_0	Prototype A1 and Prototype A3	٤٩	
٥_٦	Prototype A5b	٥١	
0_V	Ultrasonography with an applied amniotic membrane that is fixed by suture to final prototype A5b	٥٢	
٦_١	Illig shell with AM (bio-onlays) for the management of PED secondary to neurotrophic keratopathy after PKP	٥٦	
7_7	Complications of the sutured AM	٥٧	
٣-٣	A case of alkali burn treated by ProKera	09	
٦_٤	A case with a history of chemical injury and subsequent symblepharon and pseudopterygium after treatment by ProKera	٦.	
٦_٥	A case with a history of recurrent pterygium treated with ProKera	٦.	
٦_٦	Clinical photographs of a patient with staphylococcal keratitis treated by ProKera	٦٢	
٦_٧	Clinical photographs of a patient with staphylococcal keratitis treated by ProKera	٦٣	
٦_٨	Clinical photographs of patient with pseudomonas keratitis treated by ProKera	٦٤	
٦_٩	A case with TEN treated by ProKera	٦٨	

List of Tables

Table No.		Description		page
٣,١	Physiological prop	perties of amniotic me	embrane	71
٤,١	Uses of amniotic membrane in ophthalmic diseases		۲٧	
٥,١	Comparison prototypes	between	different	٥٣
٦,١	Comparison of PM	MA Ring-AM and t	the Prokera	٥٨

List of Abbreviations

AM	Amniotic membrane
AMT	Amniotic membrane transplantation
AECs	Amniotic epithelial cells
CRH	Corticotrophin releasing hormone
Fig.	Figure
FL	Florida
HCG	Human chorionic gonadotrophin
HLA	Human leucocytic antigen
IHD	Inner horizontal diameter
IL	Interleukin
IVD	Inner vertical diameter
IVIG	Intravenous immunoglobulin
INF	Interferon
LASEK	Laser assisted subepithelial keratectomy
NK	Natural killer cells
OHD	Outer horizontal diameter
OVD	Outer vertical diameter
PRK	Photorefractive keratectomy
PMMA	Polymethylmethacrylate
SJS	Steven Johnson Syndrome
TAC	Transient amplifying cells
TEN	Toxic epidermal necrolysis
TIMP	Tissue inhibitors of Metalloproteinases
TNF	Tumor necrosis factor
US	United States

(A) Anatomy of the cornea:

The cornea consists of o layers: epithelium, Bowman's layer, stroma, Descemet's membrane and endothelium as shown in *fig.* (1.1) (Chris, 1997).

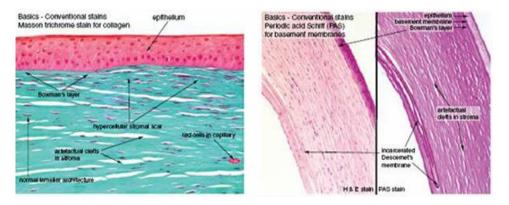


Fig. (1,1) Layers of the cornea (Chris, 1997).

Epithelium

The corneal epithelium is a stratified squamous, non-keratinizing epithelium of about \circ cell layers and $^{r} \cdot - \circ \cdot \mu m$ thickness. It is composed of r types of cells: basal, wing and superficial cells as shown in *fig.* (1.2) (*Mclaughin et al.*, 1985).

The flat superficial cells are organized in \(^\text{layers}\) layers with junctional arrangements between adjacent cells. These junctional complexes obliterate the intercellular space and, therefore, serve as an anatomical barrier to the passage of substances into the cornea (*Mclaughin et al.*, 1985).

The surface area of the outermost cells is increased by microvilli that facilitate the attachment of mucin and the tear film (*Kanski*, 2007).

The polygonal wing cell layer is $^{7-7}$ cells deep, with an intensive interdigitation of each cell with numerous desmosomal attachments (*Kanski*, 2007).

The basal cells are aligned perpendicular to the corneal surface and are attached by hemidesmosomes to its own secretory product on muthick basement membrane (Yanoff, Y...).

Basal epithelial cells progressively deform into wing cells and thereafter into surface cells, with a total transit time of around \forall days (*Chris*, 1997).

Corneal stem cells reside in the transitional epithelium between cornea and conjunctiva (i.e. the limbus), mainly the superior and inferior limbus, possibly in the palisades of Vogt. They are indispensable for the maintenance of healthy corneal epithelium. They also act as a junctional barrier, preventing conjunctival tissue from growing onto the cornea. Dysfunction or deficiency of limbal stem cells may result in chronic epithelial defects (*Kanski*, 2007).

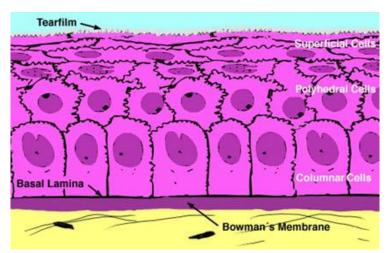


Fig. (1,7) Histology of the epithelium (Chris, 1997).

Bowman's Layer

Bowman's layer is an acellular zone about $^{\land - \backprime \cdot}$ $^{\backprime \cdot}$ $^{\iota \cdot}$

Posteriorly it merges into the anterior stroma. The function of Bowman's layer is unknown, but it may act as a barrier to corneal invasion by microorganisms (*Chris*, 1997).

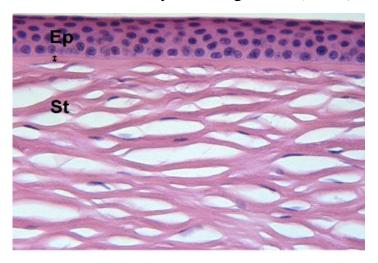


Fig. (1,7) Histology of the Bowman's layer and the stroma (Yanoff, 2009).

Stroma

The corneal stroma comprises over $\P \cdot \ \%$ of the normal thickness and consists primarily of collagen, stromal cells and proteoglycans. It is approximately $\ \ \%$ water. The collagen fibrils are arranged into $\ \ \%$ · · · · · · · lamellae parallel to the outer surface, and each lamella extends across the entire breadth of the cornea (*Maurice*, 1984). Fig. (1.4) demonstrates the lamellae of the stroma. The spacing between collagen fibrils is