Utility of Anti-endothelial Cell Autoantibodies as a Marker for Immune-mediated Vasculitis in Sudden Sensorineural Hearing Loss

Thesis
Submitted for Partial Fulfillment of the Master Degree
In Clinical Pathology

By
Mohammad M. Abd El-Kareem Abd El-Maguid
M.B.B Ch
Cairo University

Supervised by

Professor Dr. / Sherin Mahmoud Kamel

Professor of Clinical Pathology & Immunology Faculty of Medicine - Cairo University

Doctor/ Nevein Abd El-Gawad Omran

Assistant Professor of Clinical Pathology Hearing and Speech Institute

Doctor/ Reham Emad El-din Abd Allah

Lecturer of Clinical Pathology & Immunology Faculty of Medicine - Cairo University

> Faculty of Medicine Cairo University

ACKNOWLEDGEMENT

Words are not able to thank **ALLAH** for His kindness, generosity and favor. He had given me the strength to achieve this work.

I would like to present my sincere thanks and appreciation to **Prof. Doctor/**Sherin Mahmoud Kamel, professor of Clinical Pathology & Immunology,
Faculty of Medicine, Cairo University, who guided this work and helped
whenever I was in need. Her great patience, close supervision, and constant
encouragement throughout this work are beyond my words of thanks.

I would like to express my deepest gratitude and appreciation to **Doctor/ Nevein Abd El-Gawad Omran**, Assistant Professor of Clinical & Chemical Pathology, Hearing & Speech Institute, for her meticulous supervision, remarkable guidance, great backing and valuable time she had given to me throughout the work.

I am really grateful to **Doctor/ Reham Emad El-din Abd Allah**, Lecturer of Clinical Pathology & Immunology, Faculty of Medicine, Cairo University, for her encouragement, valuable assistance and advice.

To all staff members of Clinical and Chemical Pathology Department in Hearing and Speech Institute, I want to express my thanks and appreciation for their continuous help and to everyone who participated in any way in this work.

Finally, I would like to express my deepest gratitude for the constant support, understanding and love that I received from my family and my friends during this work.

Mohammad Abd El-Kareem

ABSTRACT

Introduction

Sudden hearing loss is a sensorineural hearing impairment that develops over a period of a few hours to a few days and whose etiology can be found only in 10% to 15% of patients.

Several theories have been proposed regarding the development of sudden sensorineural hearing loss (SSNHL). There is considerable evidence suggesting that hearing can be influenced by immunity in the inner ear.

The pathogenesis of autoimmune hearing loss includes vasculitis of inner ear vessels, cross-reacting antibodies, or autoantibodies directed against inner ear antigenic epitopes.

The hypothesis that vascular damage might have a pathogenetic role in immune-mediated SSNHL is supported by labyrinthine fibrosis and cochlear ossification found in patients affected by SSNHL in conjunction with autoimmune disorders.

This work aimed to detect to what extent the vascular damage could have a role in the pathogenesis of SSNHL and to evaluate the role of anti-endothelial cell antibodies (AECA) as a serological marker of vasculitis in patients with SSNHL.

The present study included fifty patients with idiopathic SSNHL (ISSNHL). Thirty healthy subjects, age and sex matched, were included in the study as a control group.

Some immunological parameters, namely erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), AECA, anti-neutrophil cytoplasmic antibodies (ANCA) and anti-nuclear antibodies (ANA), were done for patients and control groups.

Results

ESR, CRP and AECA levels showed highly significant elevations in patients group as compared to controls. Thus these parameters could be of value in suspecting immune-mediated vasculitis in hearing loss. Correlation studies revealed a highly significant positive correlation between AECA levels and both of ESR and CRP, which indicates that the cause of rising of all these parameters is almost the same.

As regards ANCA and ANA, no positive cases were noticed among controls. In the patients group, 54% of patients were ANCA-positive and only 6.0% of patients were positive for ANA and thus differed significantly from normal controls.

AECA levels were significantly elevated in ANCA-positive patients. AECA levels showed a highly significant difference in patients with different degrees of hearing loss (HL). The results obtained by the receiver operating characteristic (ROC) curve indicated that AECA may provide a valuable tool for detecting inner ear vasculitis as a cause of SSNHL.

Conclusion

Vasculitis of the inner ear vessels may play a role in the pathogenesis of some cases of ISSNHL. It may occur with any age, sex and with any degree of HL. ESR and CRP should be taken in consideration as a routine screening test for such cases. AECA may represent a serological marker of immune-mediated vascular damage in SSNHL. It could be used early in the disease for proper early diagnosis and to identify a subset of patients whose immunosuppressant therapy may result in stabilization of and possibly improvement in hearing acuity.

Key words

Anti-endothelial cell antibodies; sudden sensorineural hearing loss; vasculitis; immune-mediated inner ear diseases.

Table of Contents

	Page
Acknowledgement	i
Abstract	ii-iii
Table of contents	iv
List of abbreviations	v-ix
List of tables	x-xi
List of figures	xii-xiii
Introduction and aim of the work	1-2
Review:	3-69
Chapter 1: Anatomy of the ear	3-12
Chapter 2: Physiological Aspects	13-20
Chapter 3: Hearing Loss and Some Pathological Aspects	21-31
Chapter 4: Vasculitis & Immune-mediated Inner Ear Diseases	32-46
Chapter 5: Anti-Endothelial Cell Antibodies (AECA)	47-69
Subjects and methods	70-90
Results	91-109
Discussion	110-118
Summary and Conclusion	119-121
Recommendation	122
References	123-131
Summary in Arabic	132-133

List of Abbreviations

A	
-AAV	: ANCA-associated vasculitis.
-Ab	: Antibody.
-aCL	: Anti-cardiolipin antibodies.
-ADCC	: Antibody-dependant cellular cytotoxicity.
-AECA	: Anti-endothelial cell antibodies.
-Ag	: Antigen.
-AHA	: Anti-heparin antibodies.
-AICA	: Anterior inferior cerebellar artery.
-AIDS	: Acquired immune deficiency syndrome.
-AIED	: Autoimmune inner ear disease.
-ANA	: Anti-nuclear Antibodies.
-ANCA	: Anti-neutrophil cytoplasmic Antibodies.
-Anti-GBM	: Anti-glomerular basement membrane antibodies.
-aPL	: Anti-phospholipid antibodies.
-APS	: Anti-phospholipid syndrome.
-AUC	: Area under the ROC curve.
В	
- β2-GPI	: β2-glycoprotein-I.
-B cells	: B lymphocytes.
-BD	: Behçet's disease.
-BM	: Basilar membrane.
C	
-CAM	: Cell adhesion molecule.
-c-ANCA	: Cytoplasmic anti-neutrophil cytoplasmic antibodies.
-CBC	: Complete Blood Count.
-CD11b	: Cluster of differentiation 11b.
-CD95	: Cluster of differentiation 95 (=Fas).
-CDC	: Complement-dependent cytotoxicity.
-CF	: Correction factor.
-CHL	: Conductive hearing loss.
-Cl	: Chloride ions.
-cm	: Centimeter.
-cm ²	: Square centimeter.
-CRP	: C-reactive protein.
-CSF	: Cerebrospinal fluid.

D	
-dB	: Decibel.
-DCs	: Deiters' cells (outer phalangeal cells).
-Dyne	: A unit of force.
E	
-EC	: Endothelial cell.
-ECs	: Endothelial cells.
-ELISA	: Enzyme-linked immunosorbent assay.
-ENT	: Ear, Nose and throat.
-ESR	: Erythrocyte Sedimentation Rate.
F	
-FACS	: Fluorescence-activated cell sorter analysis.
-Fas	: Apoptosis Stimulating Fragment (=CD95).
-FCS	: Fetal calf serum.
-FTA-ABS	: Fluorescent Treponemal Antibody Absorption.
G	
-GCA	: Giant Cell Arteritis.
-G-CSF	: Granulocyte colony-stimulating factor.
-GM-CSF	: Granulocyte macrophage colony-stimulating factor.
-GRO-α	: Growth-related oncogene alpha.
H	
-HBV	: Hepatitis B virus.
-HCV	: Hepatitis C virus.
-HDL-cholesterol	: High-density lipoprotein cholesterol.
-HIV	: Human Immunodeficiency Virus.
-HDMEC	: Human Dermal Microvascular Endothelial Cells.
-HL	: Hearing Loss.
-HLA I	: Human leucocyte antigen class I.
-HLA II	: Human leucocyte antigen class II.
-HRP	: Horseradish peroxidase enzyme.
-H.S.P.	: Henoch Schonlein purpura.
-HSP	: Heat shock proteins.
-HSP 60	: Heat shock protein 60.
-HSP 70	: Heat shock protein 70.
-HUVEC	: Human umbilical vein endothelial cells.
-Hz	: Hertz.
Ι	
-ICAM-1	: Intercellular adhesion molecule 1.

	201 0 7 1 200 10 1 100 100 100 100 100 100 100
-ICSH	: International council for standardization in hematology.
-IgG, A, M	: Immunoglobulin G, A, M.
-IHCs	: Inner hair cells.
-ΙκΒα	: Inhibitor-alpha for NFκB.
-IL	: Interleukin.
-IL-1	: Interleukin-1.
-IL-1β	: Interleukin-1β.
-IL-1RA	: Interleukin-1 receptor antagonist.
-IL-2	: Interleukin-2.
-IL-6	: Interleukin-6.
-IL-8	: Interleukin-8.
-IPC	: Inner phalangeal cell.
-IPSNHL	: Idiopathic progressive sensorineural hearing loss.
-ISSNHL	: Idiopathic sudden sensorineural hearing loss.
J	
-JNK	: c-Jun N-terminal kinase.
K	
-K ⁺	: Potassium ions.
-KD	: Kawasaki's disease.
-kDa	: Kilo Dalton.
-kHz	: Kilo Hertz.
-K-S test	: Kolmogorov-Smirnov test.
L	
-LDL-cholesterol	: Low-density lipoprotein cholesterol.
M	
-MAPK	: Mitogen-activated protein kinase.
-MCP-1	: Monocyte chemoattractant protein-1.
-MCTD	: Mixed connective tissue disease.
-mm	: Millimeter.
-mmol/l	: Millimole/liter.
-MPA	: Microscopic Polyangiitis.
-MPO	: Myeloperoxidase.
-MRI	: Magnetic resonance imaging.
-MS	: Mass spectrometry.
-MS/MS	: Tandem mass spectrometry.
-MW	: Molecular weight.
N	
-n	: Number of subjects.

	<u> </u>
-Na ⁺	: Sodium ions.
-NFκB	: Nuclear factor kappa B (= Nuclear factor kappa-light-chain-
	enhancer of activated B cells).
-NK cells	: Natural Killer cells.
O	
-OD	: Optical density.
-OHCs	: Outer hair cells.
P	
-PAN	: Polyarteritis nodosa.
-p-ANCA	: Perinuclear anti-neutrophil cytoplasmic antibodies.
-PBMC	: Peripheral blood mononuclear cells.
-PBS	: Phosphate-buffered saline.
-PR3	: Proteinase-3.
-Prx2	: Peroxiredoxin2.
-PSD95	: Postsynaptic density 95.
-PTS	: Permanent threshold shift.
R	
-r	: Correlation coefficient.
-RF	: Rheumatoid factor.
-RIA	: Radioimmunoassay.
-ROC	: Receiver operating characteristic.
-RP	: Raynaud's phenomenon.
-RPM	: Round per minute.
-RPSNHL	: Rapidly-progressing sensorineural hearing loss.
S	
-SARS	: Severe acute respiratory syndrome.
-SD	: Standard Deviation.
-SHL	: Sudden hearing loss.
-SLE	: Systemic lupus erythematosus.
-SLEDAI	: SLE disease activity index.
-SMV	: Spiral modiolar vein.
-SNHL	: Sensorineural hearing loss.
-SSc	: Systemic sclerosis.
-SSNHL	: Sudden Sensorineural hearing loss.
<u>T</u>	
-T3	: Total Tri-iodothyronine.
-T4	: Total Thyroxine.
-TA	: Takayasu's Arteritis.

List of Abbreviations

-T cells	: T lymphocytes.
-TF	: Tissue factor.
-TLR4	: Toll-like receptor 4.
-TMB	: 3,3′,5,5′-tetramethylbenzidine.
-TNF-α	: Tumor necrosis factor-alpha.
-TORCH	: Toxoplasmosis, Rubella, Cytomegalovirus, Herpes simplex.
-TSH	: Thyroid-stimulating hormone.
-TTS	: Temporary threshold shift.
U	
-μl	: Microliter.
V	
-VCAM-1	: Vascular cell adhesion molecule 1.
-VDRL	: Venereal Disease Research Laboratory.
W	
-WB	: Western blot.
-WG	: Wegener's granulomatosis.

List of Tables

Table	Title	Page
Table 1	Electrolytes concentrations of the endolymph and perilymph.	12
Table 2	Suggested categorization of SSNHL.	27
Table 3	Classification of vasculitis.	34
Table 4	Mass spectrometry data of the endothelia cell protein spots	52
	identified as specific target antigens.	
Table 5	ESR ranges in health.	85
Table 6	Distribution of the studied group into controls and patients of	92
	SSNHL.	
Table 7	Degrees of HL in patients group.	92
Table 8	General characteristics and lab findings of the control group.	93
Table 9	General characteristics and lab findings of the patients group.	94
Table 10	Age distribution among controls and patients.	95
Table 11	Comparison between ages in patients with different degrees of HL.	96
Table 12	Sex distribution among controls and patients.	97
Table 13	Frequency and percentage of female and male subjects in	98
	patients with different degrees of HL.	
Table 14	Comparison of values of AECA, ESR and CRP in control and	99
	patients groups.	
Table 15	Distribution of negative and positive subjects of ANCA and	100
	ANA among controls and patients.	
Table 16	Comparison between AECA levels in negative-versus positive-	102
	ANCA and ANA patients.	
Table 17	Frequency of ANCA-negative and ANCA-positive cases in	103
	patients with different degrees of HL.	

List of Tables

Table	Title	Page
Table 18	Frequency of ANA-negative and ANA-positive cases in patients	103
	with different degrees of HL.	
Table 19	Comparison between levels of AECA, ESR and CRP in patients	105
	with different degrees of HL.	
Table 20	Correlation between AECA and ESR, CRP & age among	107
	patients group.	
Table 21	Some AECA levels among the studied group and their	109
	corresponding sensitivity and specificity.	

List of Figures

Figure	Title	Page
Figure 1	The ear anatomy.	3
Figure 2	The inner ear anatomy.	7
Figure 3	Anatomy of lymphatic sac of inner ear.	8
Figure 4	Schematic cross-section of the cochlea.	10
Figure 5	Structure of the organ of Corti.	11
Figure 6	Characteristics of sound waves.	13
Figure 7	Mechanisms of vascular damage in vasculitis.	36
Figure 8	The inner ear membrane system, including endolymphatic	43
	sac and duct.	
Figure 9	Target antigens of AECA.	48
Figure 10A	Binding of AECA to ECs might be able to induce	57
Figure 10B	cytotoxicity. Binding of AECA to ECs might be able to induce apoptosis.	58
Figure 10C	Binding of AECA to ECs might be able to induce proinflammatory and procoagulant effects.	60
Figure 11	Diagrammatic representation of Receiver Operating Characteristic (ROC) curve.	90
Figure 12	Distribution of the studied group into controls and patients of SSNHL.	92
Figure 13	Degrees of HL in patients group.	92
Figure 14	Age distribution among controls and patients.	95
Figure 15	Comparison between ages in patients with different degrees of HL.	96

Figure	Title	Page
Figure 16	Sex distribution among controls and patients.	97
Figure 17	Comparison of values of AECA, ESR and CRP in control	99
	and patients groups.	
Figure 18	Distribution of negative and positive subjects for ANCA	100
	among controls and patients.	
Figure 19	Distribution of negative and positive subjects for ANA	101
	among controls and patients.	
Figure 20	Comparison between AECA levels in negative- versus	102
	positive- ANCA and ANA patients.	
Figure 21	Comparison between AECA levels in patients with	105
	different degrees of HL.	
Figure 22	Comparison between levels of ESR in patients with	106
	different degrees of HL.	
Figure 23	Comparison between levels of CRP in patients with	106
	different degrees of HL.	
Figure 24	Correlation between ESR and AECA among patients	107
	group.	
Figure 25	Correlation between AECA and CRP among patients	108
	group.	
Figure 26	Correlation between AECA and age among patients group.	108
Figure 27	ROC curve for determination of AECA levels in prediction	109
	of SSNHL cases.	

INTRODUCTION AND AIM OF THE WORK

INTRODUCTION

Sudden sensorineural hearing loss is defined as hearing loss of 30 decibel (dB) or more over at least three contiguous audiometric frequencies that develops over a period of a few hours to 3 days and whose etiology can be found only in 10% to 15% of patients (*Tebo et al.*, 2006).

Several theories have been proposed regarding the development of SSNHL. There is considerable evidence suggesting that hearing can be influenced by immunity in the inner ear. Immunity can protect against infections of the labyrinth, but immune response may also damage the delicate tissues of the inner ear (*Geelan et al.*, 2009).

A number of systemic autoimmune disorders includes hearing loss and vertigo as parts of their constellation of symptoms such as *systemic lupus* erythematosus (SLE), Cogan's syndrome, Wegener's granulomatosis (WG) and polyarteritis nodosa (PAN) (Cadoni et al., 2003). It also appears that autoimmune damage can exist as an entity confined to the labyrinth. It is extremely important to recognize immune disorders of the inner ear because they are among the few forms of hearing loss that are currently amenable to medical treatment (Gross et al., 2008).

The pathogenesis of autoimmune hearing loss includes vasculitis of inner ear vessels, cross-reacting antibodies, or autoantibodies directed against inner ear antigenic epitopes (*Bovo et al.*, 2009).

The hypothesis that vascular damage might have a pathogenetic role in immune-mediated SSNHL is supported by labyrinthine fibrosis and cochlear ossification found in patients affected by autoimmune disorders