Study Of The Relationship Between Body Mass Index And Asthma Control In Adults

Thesis

Submitted for partial fulfillment of

The master degree of chest diseases and tuberculosis

By

Wafaa Talaat Elsayed

M.B.B.Ch

Supervisors

Prof. Laila Ashor Mohammed Helale

Professor of chest Disease -Ain Shams University

Dr: Gehan Mohamed Elassal

Lecturer of chest disease -Ain Shams University

Faculty of Medicine
Ain Shams University
(2008)

Acknowledgement

Firstly and foremost thanks to **God** almighty who enabled me to carry out this work and every work.

The words can never express my infinite gratitude and respectful appreciation to Professor Laila Ashor Mohammed Helale, professor of Pulmonology, Ain-Shams University for her valuable motherly guidance, instructive supervision and her intensive support. Without her continuous encouragement and generous advice this work would not have been possible.

I would like to extend my sincere gratitude and express my deepest thanks to Doctor Gehan Mohamed Elassal lecturer of Pulmonology, Ain-Shams University for her continuous encouragement, generous attitude as well as his tremendous effort in carrying out this work. She has been hand in hand with me throughout all phases of this work.

I wish also to thank my colleagues, nursing staff and all workers in the chest department at ain shams and Mataria teaching hospital.

CONTENTS

	Page
► INTRODUCTION	1
► AIM OF THE WORK	
REVIEW OF LITERATURE	
■ Asthma	
 Definition 	4
	5
	6
_	7
	14
_	asthma30
•	nma34
1	37
• Diagnosis	41
• Classification	49
■Obesity	
Definition	55
• Classification	55
• BMI	55
 Pathophysiology 	60
• Complication	61
 Causes and mechanism. 	64
• Treatment	69
■ Relation between asthma	and obesity
Obesity and airway response	onsivness74
	75
 Obesity and Pulmonary I 	Function77

■Pulmonary Function Testing
• Definition80
• Description83
• Measurement devices83
• Indications84
• Contraindications85
• Preparation85
• Interpretation86
• Quantification of impairment by spirometry90
• Special assessments91
• Assessment of operative risk by spirometry91
►SUBJECTS AND METHODS94
►RESULTS99
► DISCUSSION125
► SUMMARY AND CONCLUSION139
► REFRENCES141
► ARABIC SUMMARY

LIST OF ABBREVIATIONS

AHR	Airway hyper-responsiveness
ASM	Airway Smooth Muscle
ATS	American thoracic society
BAL	Bronchoalveolar lavage
BHR	Bronchial hyper responsiveness
BMI	Body mass index
C/EBPa	CCAAT/enhancer binding proteins α
COPD	Chronic obstructive pulmonary disease
COX-2	Cyclooxygenase -2
CXR	Chest X ray
EGF	Epithelial growth factor
FEF	Forced Expiratory Flow
FENO	Forced exhaled nitric oxid
FET	Forced expiratory time
FEV1	Forced expiratory volume in the first second
FGF-2	Fibroblast growth factor-2
FVC	Forced Vital capacity
G Protein	Guanine nucleotide binding protein
GM-CSF	Granulocyte–macrophage colony stimulating factor
IgE	Immunoglobulin B
IGF	Insulin like growth factor

IgG	Immunoglobulin G
IL	Interleukin
INOS	Inducible nitric oxide synthase
LPR	Late phase reaction
LTC ₄	Leukotriene C ₄
LTD ₄	Leukotriene D ₄
LTE ₄	Leukotriene E ₄
NOS	Nitric oxide synthase
PAF	Platelet-activating factor
PDGF	Platelet derived growth factor
PEF	Peak expiratory flow
PGD ₂	Prostaglandin D ₂
PGE ₂	Prostaglandin E ₂
$PGF_{2\alpha}$	Prostaglandin $F_{2\alpha}$
RANTES	Regulated upon Activation Normal T-cell Expressed and secreted
RSV	Respiratory Syncytial viruses
RV	Residual volume
TGF-β	Transforming growth factor B
Th	T helper cell
TLC	Total lung capacity
TNF	Tumor necrosis factor
VEGF	Vascular endothelial growth factor

LIST OF TABLES

Table (I): Classification of asthma severity by clinical features
before treatment52
Table (Π): Levels of Asthma Control. 53
Table (III): The standard weight status categories associated with
BMI ranges for adults58
Table (1): Comparison between the studied groups as regard
general data
Table (2): Comparison between group A and B as regard
pulmonary functions tests
Table (3): Comparison between group A and C as regard
pulmonary functions tests
Table (4): Comparison between group B and C as regard
pulmonary functions tests
Table (5): Comparison between the different groups as regard the
pulmonary function parameters according to the criteria of the criteria
of American thoracic society106
Table (6): Comparison between the studied groups as regard
BMI107
Table (7): Comparison between the males and females as regard
BMI among the studied groups
Table (8): Correlation between pulmonary function tests versus
other variables among group A109
Table (9): Correlation between pulmonary function tests versus
other variables among group B

Table (10): Correlation between pulmonary function tests versus
other variables among group C111
Table (11): Comparison between males and females as regard
pulmonary function tests among group A112
Table (12): Comparison between males and females as regard
pulmonary function tests among group B113
Table (13): Comparison between males and females as regard
pulmonary function tests among group C114

LIST OF GRAPHS

Graph 1:
Comparison between the studied groups as regard PFT115
Graph 2:
Comparison between the studied groups as regard BMI116
Graph 3:
Correlation between FVC and age among group A117
Graph 4:
Correlation between FEV1 and age among group A118
Graph 5:
Correlation between PEF versus age among group A119
Graph 6:
Correlation between height and FEV1/FVC among group A120
Graph 7:
Correlation between height and FEV1 among group B121
Graph 8:
Correlation between BMI versus FEV1 among group C122
Graph 9:
Correlation between height and FEF25-75 among group C123
Graph 10:
Comparison between males and females among group A124

Introduction

Asthma is a chronic inflammatory disease characterized by lower airway hyperresponsiveness with variable airflow limitation that can resolve spontaneously or through treatment (Nilva et al., 2002). This illness is a serious public health problem worldwide and its prevalence has increased in recent decades mainly in urban areas which might be due to changes in lifestyle (Schachter et al .,2001).

Various studies have shown a correlation between an increase in body mass index and asthma prevalence initially in children and recently in adults (Akerman et al., 2004). Longitudinal studies have shown that obesity and the incidence of asthma increase in parallel (Chinn, 2006).

Changes in the respiratory mechanics with reductions in the functional residual capacity and in the tidal volume secondary to obesity as well as a sedentary lifestyle and a limited ability to perform physical activities, all of these related to obese individuals, can cause worsening of the asthma symptoms (**Huovinen et al.,2003**). Obesity might also increase the risk of gastro-esophageal reflux, which promotes airway hyperresponsiveness in individuals with asthma (**Shore et al., 2006**).

Inflammatory alterations described in obese individuals have recently been mentioned as factors that might interfere with clinical manifestations of asthma in these individuals (**Beuther et al., 2007**). The inflammatory condition unique to obese individuals, including an increase in tumor necrosis factor alpha and other pro-inflammatory cytokines, such as interleukin 4, interleukin 5 and interleukin 6, which determine the superimposition of these inflammatory mechanisms on those involved in asthma. This increases the influence on airway muscle contractility. (**Beuther et al., 2007**).

The association between obesity and asthma control remains controversial. Various studies have shown that the association between elevated body mass index and asthma incidence is significantly stronger in women than in men (Beckett et al., 2001). However, other studies have shown that obesity is a significant risk factor for the incidence of asthma in both genders (Celedon et al., 2001).

(Stenius et al., 2000) found that the influence of weight loss on the pulmonary function of individuals with asthma showed an improvement in bronchial obstruction indices in those lost weight when compared to a control group of obese asthmatic patients who did not take part in the weight control program.

Aim of the work

The aim of this work is to determine whether there is a correlation between body mass index and the degree of asthma control in asthmatic patients.