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Abstract

Subwavelength nanostructures enable the manipulation and molding of light

flow in nanoscale dimensions. By controlling and designing nanoscale geome-

tries we can control the coupling of light into specific active layer of solar cells

materials and tune macroscale properties such as tranmission, reflection, and

absorption.

Thin film solar cells (TFSCs) are a promising type of photovoltaics as its

thickness in nanoscale. This advantage lead to a complete charge carrier col-

lection depending on diffusion length of active material used in TFSCs. In

addition, decrease the cost of material used. However, low thickness of TFSCs

reduce the light absorption efficiency as absorption length of photon exceed the

thickness. Therefore, the need to confine incident sun light into small active

material thickness become a promising research point recently.

The thesis purpose is enhancing the light absorption efficiency without

degradation in electron charge collection efficiency for Perovskite TFSCs us-

ing subwavelength nanostructures deposited on or inside or below active layer

of solar cells.

Chapter 1 provides an overview about basic parameters of solar cells and

how these parameters depend on material and generation of photovoltaics.

Also, reported approaches for enhancing light trapping in many thin film solar

cells types illustrated.

Chapter 2 describes physics behind recent nanophotonics methods used in

solar cells, and defines critical parameters for coupling incident light within

active layer of desired solar cells. Light scattering from metallic or dielectric

nanoparticles, absorption and scattering efficiency for nanoparticle over sub-

strate, metamaterial and antireflective surfaces studied in details.

Chapter 3 shows simulation tool used and its setup for recreating work on

different solar cell materials. Starting with optical model for nanoscatter on

substrate, followed by optical model for light absorption calculation, and end

with electrical model for measuring overall power conversion efficiency.

In Chapter 4, we used Mie theory as a guide to calculate scattering and ab-

sorption cross section for plasmonics nanoscatters deposited on the top active
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layer to select the optimum geometry and dimension for highest light absorp-

tion. Then, we investigated the performance of dielectric nanoscatters while

comparing it with plasmonic materials. Moreover, we performed optical model

to calculate light absorption percentage followed by electrical model to calculate

photon-electron conversion efficiency.

In Chapter 5, we used Mie theory calculate scattering and absorption cross

section for silver nanoscatters deposited inside active layer to select the op-

timum geometry and dimension for highest scattering efficiency and lowest

absorption efficiency to enhance light absorption.

In Chapter 6, we proposed front dielectric and back plasmonic wire grating

to achieve maximum theoretical absorption for incident sun light current. We

performed optical model to calculate light absorption percentage followed by

electrical model to calculate photon-electron conversion efficiency.
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