Subclinical Hypothyroidism and Its Effect on Serum Lipids in Pediatric Systemic Lupus Erythematosus

Thesis

Submitted for Partial Fulfillment of Master Degree
In Pediatrics

By

Ramadan Mahmoud Abd El-Wahab

M.B.B.CH, 2003 - Assiut University

Under Supervision of

Prof./ Khaled Salah Awaad

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Dr./ Dalia Helmy El-Ghoneimy

Lecturer of Pediatrics
Faculty of Medicine - Ain Shams University

Dr./ Dina Ahmed Soliman

Lecturer of Clinical Pathology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2009

List of Contents

Title P	age No.
Acknowledgement	I
List of abbreviations	II
List of tables	IV
List of figures	VI
Introduction	1
Aim of the work	3
Review of Literature	
Systemic lupus erythematosus	4
Hypothyroidism and systemic lupus erythematosus	18
Treatment of subclinical hypothyroidism	30
Patients and methods	35
Results	44
Discussion	61
Summary & conclusion	71
Recommendation	75
References	76
Appendix	93
Arabic summary	

Acknowledgment

First of all thanks to **ALLAH** for his care and generosity throughout my life.

I wish to express my deepest thanks, gratitude and profound respect to my honored supervisors, Prof.Khaled Salah Awaad, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for his meticulous supervision and support throughout this work, Dr. Dalia Helmy El-Ghoneimy, Lecturer of Pediatrics, Ain Shams University for the tremendous efforts she has done in the meticulous revision of this work. I would like to express my great thanks to Dr. Dina Ahmed Soliman, Lecturer of Clinical Pathology, Ain Shams University for her efforts in the laboratory part of this work.

I would like to express my endless gratitude to my dear patients and their parents without whose help and cooperation this work would have never been accomplished. May Allah grant them good health.

At last, I am indebted for my family.

Ramadan Mahmoud Abd El-wahab

List of Abbreviations

AACE	: American Association of Clinical
	Endocrinologists
ACR	: American College of Rheumatology
ANA	: Antinuclear antibody
APCs	: Antigen presenting cells
ATA	: American Thyroid Association
ATG	: Anti-thyroglobulin antibodies
C	: Complement
CBC	: Complete blood count
CD	: Cluster of differentiation
CRH	: Corticotrophin releasing hormone
CTL	: Chronic lymphocytic thyroiditis
CTL A	: Cytotoxic T lymphocyte-associated protein
DCs	: Dendritic cells
DEHA	: Dehydroepiandrosterone
DR	: D-Region
ds-DNA	: Double-stranded deoxyribonucleic acid
ESR	: Erythrocyte sedimentation rate
FcγRA	: Fragment constant gamma receptor allele
FT4	: Free thyroxine hormone
HDL	: High density lipoprotein
HLA	: Human leucocyte antigen
HnRNP	: Heteronuclear ribonucleoprotein
HPA	: Hypothalamo-pituitary-adrenal
HRP	: Horseradish peroxidase
ICs	: Immune complexes
IFN	: Interferon
IgG	: Immunoglobulin G
IL	: Interleukin
IL-R	: Interleukin –receptor
ISCs	: Immunoglobulins secreting cells
LDL	: Low density lipoprotein

List of Abbreviations (Cont.)

mDCs	: Myeloid dendritic cells
MHC	: Major histocompatibility complex
NKT	: Natural killer T- cells
PBMCs	: Peripheral blood mononuclear cells
PCPs	: Plasma cell precursors
pDCs	: Plasmacytoid dendrtic cells
SCH	: Subclinical hypothyroidism
SLE	: Systemic lupus erythematosus
SLEDAI	: Systemic lupus erythematosus disease activity index
Sm	: Smith
T3	: Tri-iodothyronine
TBG	: Thyroxin- binding globulin
TC	: Total cholesterol
TCR	: T- cell receptor
TD	: T-cell dependent
TG	: Triglycerides
TR	: Thyroxine replacement
Th	: T-helper
TNFR	: Tumor necrosis factor receptor
TPO Abs	: Thyroid peroxidase antibodies
TRH	: Thyrotropin-releasing hormone
TRS Ab	: Thyrotropin receptor-stimulating antibodies
TSH	: Thyroid stimulating hormone
U-RNP	: Uridylate- rich ribonucleoproteins
U-snRNP	: Uridylate- rich small nuclear
	ribonucleoproteins
UV	: Ultraviolet

List of Tables

		Page
Table 1:	The recommended levothyroxine doses for children and adolescents.	32 -
Table 2:	Systemic lupus erythematosus disease activity index (SLEDAI) score.	37 -
Table 3:	Demographic and laboratory data of the studied SLE patients	45 -
Table 4:	Comparison between ages of SLE patients with normal thyroid function versus those with subclinical hypothyroidism.	48 -
Table 5:	Comparison of SLE patients with normal thyroid function versus those with subclinical hypothyroidism as regard sex.	48 -
Table 6:	Comparison of the SLEDAI score between lupus patients with normal thyroid function versus those with subclinical hypothyroidism.	49 -
Table 7:	Comparison between SLE patients with normal thyroid function and those with subclinical hypothyroidism as regard ESR.	50 -
Table 8:	Comparison between SLE patients with normal thyroid function and those with subclinical hypothyroidism as regard cumulative steroid dose (grams)	50 -
Table 9:	Comparison between SLE patients with normal thyroid function and those with subclinical hypothyroidism as regard duration of disease (months).	51 -
Table 10:	Comparison between SLE patients with normal thyroid function and those with subclinical hypothyroidism as regard lipid profile (S.Chol, S.TG, HDL and LDL)	52 -
Table 11:	Comparison between SLE patients with normal thyroid function and those with subclinical hypothyroidism as regard TPO Abs titer	53 -

List of Tables_(cont.)

	Page	
Table 12:	The Correlation between thyroid profile (TSH & FT4) & TPO Abs titer of SLE patients with subclinical hypothyroidism and their age.	54 -
Table 13:	The Correlation between thyroid profile (TSH & FT4) & TPO Abs titer of SLE patients with subclinical hypothyroidism and their SLEDAI score.	55 -
Table 14:	The Correlation between thyroid profile (TSH & FT4) & TPO Abs titer of SLE patients with subclinical hypothyroidism and the duration of SLE	56 -
Table 15:	Relationship between thyroid profile (TSH & FT4) & TPO Abs titer of SLE patients with subclinical hypothyroidism and the cumulative steroid dose (grams).	58 -
Table 16:	Relationship between the lipid profile (Serum cholesterol, S.triglycerides, S.HDL & S.LDL) and the thyroid profile (TSH & FT4) & TPO Abs titer among SLE patients with subclinical hypothyroidism	59 -
Table 17:	Correlation of TSH of SLE patients with subclinical hypothyroidism group with the titer of TPO Abs	- 60 -

List of Figures

		Page
Figure 1:	The pathogenesis of systemic lupus erythematosus,	6 -
Figure 2:	In adolescents with an inherited genetic predisposition to CLT who experienced an environmental triggering event, thyroid autoreactivity accelerates.	- 21 -
Figure 3:	Sex distribution in the studied SLE group.	- 46 -
Figure 4:	Percentage of SLE patients with subclinical hypothyroidism among the studied SLE patients	- 47 -
Figure 5:	Comparison of the SLEDAI score between lupus patients with normal thyroid function versus those with subclinical hypothyroidism	- 49 -
Figure 6:	A positive Correlation between TSH of SLE patients with subclinical hypothyroidism and the duration of SLE.	- 57 -
Figure 7:	A positive Correlation between TPO Abs titer of SLE patients with subclinical hypothyroidism and the duration of SLE.	- 57 -
Figure 8:	A positive Correlation between TSH of SLE patients with subclinical hypothyroidism group and the titer of TPO Abs.	- 60 -

INTRODUCTION

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by autoantibodies directed against self-antigens and resulting in inflammatory damage to target organs including the kidneys, blood cells and central nervous system (*Klein and Miller*, 2004).

Thyroid autoimmune diseases have been associated with a variety of rheumatological diseases, including SLE. The thyroid disorders, including subclinical hypothyroidism and clinical hypothyroidism, were more prevalent in patients with SLE than in general population (*Viggiano et al.*, 2008).

Subclinical hypothyroidism (SCH) is characterized by normal thyroid hormone levels (total thyroxine and triiodothyronine) with elevated thyroid stimulating hormone (TSH) (*McDermott and Ridgway*, 2001).

SCH is associated with a pro-atherogenic dyslipidaemias and increased risk of cardiovascular disease (*Chu and Crapo*, 2002). These effects are being greater at higher thyroid stimulating hormone (TSH) levels (*Kahaly*, 2000).

Thyroid function and Thyroid peroxidase antibody (TPO Ab) tests should be performed as a part of the biochemical and immunological profile respectively in SLE patients (*Chan et al.*, 2001).

Thyroxine replacement therapy in SCH induces favorable changes in lipid profiles (reduction in low density lipoprotein, total cholesterol, and to a lesser extent, apolipoprotein A), especially in patients with higher base line TSH levels (>10-12Mu/L) (*Meier et al.*, 2001).

AIM OF THE WORK

The aim of the present study is to evaluate the frequency of subclinical hypothyroidism among the studied Egyptian children with systemic lupus erythematosus outlining its effects on serum lipids and its correlation with disease activity.

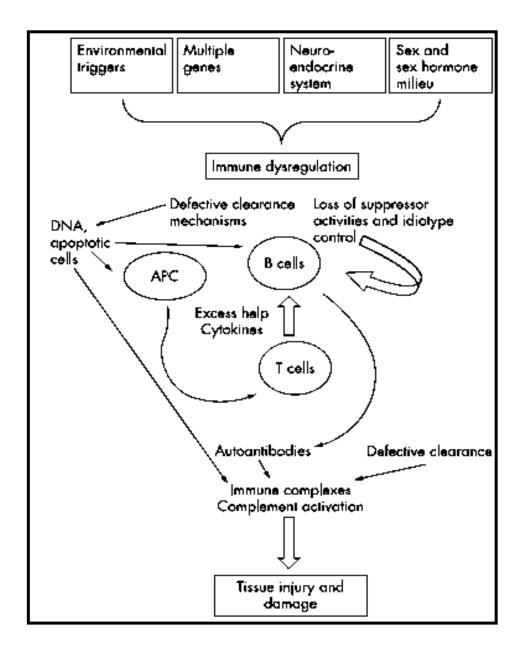
Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is an episodic, multisystem, prototypic autoimmune disease characterized by wide spread inflammation of blood vessels and connective tissues and by the presence of antinuclear antibodies (ANAs), especially antibodies to native double-stranded deoxyribonucleic acid (dsDNA) (*Petty & Laxer*, 2005).

Children represent ~15–20% of all SLE patients presentation, (Stichweh et al.. *2004*). Although the clinical and immunological findings symptoms pediatric SLE are similar to those of adult SLE, children usually have a more severe disease at onset. They also have higher rates of organ involvement, and a more aggressive clinical course than adults (Brunner et al., *2002*).

SLE is predominantly a female disease. The factor that predisposes more women to develop SLE is still unknown. There are two hypotheses. The first is based on the role of sex determination and female hormones on the immune response. The second focuses on an undefined gene on the X chromosome that exerts its effect by being present in a double dose (*Reeves et al.*, 2005).

Epidemiology:


In childhood, girls are affected 4.5 times more frequently than boys, although the overall ratio varies with age at onset (*Petty & Laxer*, 2005).

The median age at pediatric SLE diagnosis was 12.2 years. However, the diagnosis was made as early as the age of one year. The time from onset of symptoms to diagnosis varied from 1 month to 3.3 years (*Bogkanovic et al.*, 2004).

There is increasing evidence that susceptibly genes vary considerably among different ethnic groups providing evidence for the genetic heterogenecity of SLE that contributes to the clinical and pathological heterogenecity (*Olsen et al.*, 2002).

The Pathogenesis of Systemic Lupus Erythematosus:

The exact patho-aetiology of SLE remains elusive. An extremely complicated and multifactorial interaction among various genetic and environmental factors is probably involved. Multiple genes contribute to disease susceptibility. The interaction of sex, hormonal milieu, and the hypothalamopituitary—adrenal axis modifies this susceptibility and the clinical expression of the disease (*Mok and lau*, 2003).

Figure 1: The pathogenesis of systemic lupus erythematosus; APC: Antigen presenting cell. *Quoted from (Mok and lau, 2003)*.

➤ Genetics Susceptibility of SLE:

Family Studies have found a higher than expected prevalence of SLE in relatives of patients with the disease. In case- control study, 10% of patients with SLE had a first degree relative with SLE, compared with 1% in control families (*Petty & Laxer*, 2005).

The concordance of the disease in identical twins is approximately 25–50% and that in dizygotic twins is around 5%. This suggests that genetic factors play an important role in the predisposition of the disease. However, most cases of SLE are sporadic without identifiable genetic predisposing factors, suggesting that multiple environmental or yet unknown factors may also be responsible (*Sullivan*, 2000).

An association of HLA DR2 and DR3 with SLE is a common finding in patients of different ethnicities, with a relative risk for the development of disease of approximately two to five. The region containing the major Histocompatibility (MHC) locus on chromosome 6 is not the most prominent susceptility locus, suggesting that there are at least six other loci on chromosome 1, 2, 4, and 16 that contribute to the genetic predisposition to SLE (*Tsao*, 2003).

Homozygous deficiency of any of the early components of