

Faculty of science Microbiology Department

Molecular Characterization and Biological Activities of Biopolymers Produced from Marine Bacteria

Submitted By

Ahmed Mohsen Hafez Mabrouk Abu Elkher

(B.Sc. degree in Microbiology/Biochemistry, 2006)

Thesis

Submitted for the partial fulfilment for the requirement of the degree of Master of Science in Microbiology

<u>Supervisors</u>

Dr. Hala Mohammed Abu Shady

Professor of Microbiology

Faculty of Science

Ain Shams University

Dr. Ayman Kamal El Essawy

Fellow of Microbiology Specialized Hospital Ain Shams University

2016 **Approval Sheet**

Molecular Characterization and Biological Activities of Biopolymers Produced from Marine Bacteria

Submitted by

Ahmed Mohsen Hafez Mabrouk Abu Elkher

(B.Sc. degree in Microbiology/Biochemistry – 2006)

This thesis submitted for the partial fulfilment for requirement of the degree of Master of Science in Microbiology has been approved by:

Supervisors

Dr. Hala Mohammed Abu Shady

Professor of Microbiology
Faculty of Science
Ain Shams University

Dr. Ayman Kamal El Essawy

Fellow of Microbiology
Specialized Hospital
Ain Shams University

Microbiology Department Faculty of Science Ain Shams University 2016

Examination Date:

صَدق الله العَظيم سورة البقرة، آیه (32)

Acknowledgment

At first, I would like to thank Allah that is allowing me to achieve this work, without his bless any great effort is invaluable.

I wish to express my highest appreciation and sincere thanks to Prof Dr. Hala Abu Shady, Ph.D., Professor of Microbiology, Faculty of Science, Ain Shams University for her continuous valuable advice, constant support and encouragement throughout my work. I will always be in debt for her guidance and kindness.

I am particularly indebted to Dr. Ayman Kamal El-Essawy, Ph.D., Fellow of Microbiology, Specialized Hospital, Ain Shams University, for his actual guidance in fulfilling the practical part of this thesis and in guiding me through all parts of this work.

Dedication

I would like to dedicate this work to my parents, that seeded my curiosity and desire for knowledge and thanking them for their unlimited effort, patient and invocation that is unquestionable honored.

Contents

Abstract		-
Introduction		1
Aim of The Work		3
Review of literature		4
I. Carbohydrates		4
II. Classification of carbohydrates		5
II.1. Monosaccharides		5
II.2. Disaccharides		6
II.3. Oligosaccharides		8
II.4. Polysaccharides		8
II.4.1. The orig polysaccharides		10
II.4.2. Bacteria polysaccharides		11
II.4.2.	Examples of bacterial EPS	11
	II.4.2.1.1. <i>Bacillus</i> producing exopolysaccharides	12
	II.4.2.1.2. <i>Halomonas</i> producing exopolysaccharides	12

exopolysaccharides	13	
II.4.2.1.4. <i>Vibrio</i> producing exopolysaccharides	13	
II.4.2.1.5. <i>Alteromonas</i> producing exopolysaccharides	14	
II.4.2.1.6. Pseudoalteromonas producing exopolysaccharides	15	
II.4.2.1.7. <i>Rhodococcus</i> producing exopolysaccharides	16	
II.4.2.1.8. <i>Klebsiella</i> producing exopolysaccharides	16	
.2. Applications of Bacterial olysaccharides	17	
II.4.2.2.1. Biological Properties of Bacterial Exopolysaccharides	17	
II.4.2.2.2. Bacterial exopolysaccharides as texturing agent	18	
II.4.2.2.3. Medical applications of exopolysaccharides	18	
II.4.2.2.4. Pharmaceutical applications	19	
II.4.2.2.5. Wound management	19	
II.4.2.2.6. Polysaccharide vaccines	20	

II.4.2.3. Polysaccharide probiotics	21
Materials and methods	23
I. Materials	23
I.1. Bacterial strains	23
I.2. Culture media	24
I.2.1. Potato Dextrose Agar (PDA)	25
I.2.2. Nutrient broth medium	25
I.2.3. M.R.S medium (De Man-Rogosa-Sharp-	
Medium)	25
I.2.4. Christensen's Urea Agar medium	26
I.2.5. Tryptone Broth medium	26
I.2.6. MRVP broth	
medium	26
I.2.7. Simmons Citrate Agar medium	
	27
I.3. Chemicals and reagents	27
I.4. Equipments	30
II. Methods	30
II.1. Maintenance of the bacterial strains	30
II.2. Fermentation	31
II.3. Bacterial Identification	31
II.3.1. Microscopic analysis	31

II.3.2. Gram staining	32
II.3.3. Biochemical tests	32
II.3.3.1. Oxidase	32
II.3.3.2. Catalase	32
II.3.3.3. Urease	33
II.3.3.4. Indole test (tryptone broth)	33
II.3.3.5. Methyl red test	34
II.3.3.6. Vogas-Proskauer test	34
II.3.3.7. Citrate test (Simmon's citrate slant).	34
II.3.4. Molecular identification and characterization of the bacterial isolates by 16S ribosomal RNA (16S rRNA) technique	35
II.3.4.1. DNA extraction and purification	35
II.3.4.2. Polymerase Chain Reaction (PCR)	37
II.3.4.3. Purification of PCR product and DNA sequencing	38
II.3.5. Analytical methods	40
II.3.5.1. Determination of total Protein	40
II.3.5.2. Determination of total carbohydrates	40
The phenol-sulfuric acid	41

II.3.5.3. Determination of viscosity	41
II.3.5.4. Determination of monosaccharide units comprising exopolysaccharide	42
II.3.5.4.1. Complete acid hydrolysis of the bacterial exopolysaccharides	42
II.3.5.4.1.a. Qualitative examination of the hydrolysis product	43
II.3.5.4.1.b. Quantitative paper chromatography for determination of monosaccharides	43
II.3.5.5. Modification of the studied exopolysaccharide by sulfation	44
II.3.6. Biological activities of the native and sulfated bacterial exopolysaccharides	44
II.3.6.1. Anti-coagulation activity	44
II.3.6.2. Fibrinolytic activity	45
II.3.6.3. Antimicrobial activity	45
II.3.6.4 Minimum inhibitory concentration (MIC)	46
II.3.6.5. Probiotic Activity	47
Results	
I. The four methods for identification of the organisms	
I.1. Gram staining and microscopic analysis for estimation of shape, motility and spore formation	51

assay.....

I.2. Biochemical tests	52
I.3. 16S Ribosomal RNA (16S rRNA)	52
II. Optimization of Cultural Conditions for enhancing the Production of the solated bacterial exopolysaccharide	58
II.A. Environmental conditions	58
II.A.1. Effect of different incubation time on isolated bacterial exopolysaccharide	58
II.A.2. Effect of different shaking rate (rpm) on isolated bacterial exopolysaccharide	60
II.A.3. Effect of different pH values of the isolated bacterial polysaccharide	61
II.B. Nutritional conditions	63
II.B.1. Effect of different carbon sources on the production of isolated bacterial exopolysaccharide	63
II.B.1.1. Effect of different glucose concentration on exopolysaccharide production	63
II.B.1.2. Effect of different fructose concentration on exopolysaccharide production	65
II.B.1.3. Effect of different sucrose concentration on exopolysaccharide production	67
II.B.1.4. Effect of different glycerol concentration on exopolysaccharide production	69

bacterial exopolysaccharide	73
II.B.2.1. Effect of different peptone concentration on exopolysaccharide production	73
II.B.2.2. Effect of different casein hydrolysate concentration on exopolysaccharide production	75
II.B.2.3. Effect of different tri- ammonium citrate concentration on exopolysaccharide production	77
II.B.2.4. Effect of different ammonium sulfate concentration on exopolysaccharide production	78
II.B.2.5. Effect of different urea concentration on exopolysaccharide production	80
II.B.3. Effect of using different inorganic salts on the isolated bacterial exopolysaccharide	82
II.B.3.1. Effect of different di-potassium hydrogen phosphate concentration on exopolysaccharide production	82
II.B.3.2. Effect of different magnesium sulfate concentration on exopolysaccharide production II.B.3.3. Effect of different manganese sulfate concentration	84
on exopolysaccharide production	86
isolated bacterial polysaccharide (native)	88

. . .

	Sulfation modification of isolated bacterial	89
exop	olysaccharide	00
6.5.	Biological activities of the native & sulfated of studied bacterial	
exop	olysaccharides	90
	6.5. A. Fibrinolytic and anticoagulation activities of the	
	bacterial exopolysaccharides (Native) and	
	(sulfated)	90
	6.5. B. Antimicrobial activity & Minimum Inhibition	
	Concentration (MIC) of the isolated bacterial	
	exopolysaccharides (Native) and	
	(sulfated)	92
	6.5. C. Prebiotic activity of native and sulfated exopolysaccharide	96
Discussior	١	97
English Summary		105
References	S	107
Arabic sun	nmary	

List of tables

Table	Title	Page
a.	Classification of Carbohydrates	5
b.	List of chemicals and reagents	27
c.	Polymerase chain reaction experimental conditions	38
1.	The sources, location, medium and deep of microorganisms which	
	showing the highest viscosity	49
2.	Biochemical tests of microorganism B	52
3.	Effect of different incubation time to produce exopolysaccharide	59
4.	Effect of using different rpm to produce exopolysaccharide after 72	
	hours	60
5.	Effect of using different pH to produce exopolysaccharide after 72	
	hours	62
6.	Effect of different concentrations of glucose to produce	
	exopolysaccharide after 72 hours	63
7.	Effect of different concentrations of fructose to produce	
	exopolysaccharide after 72 hours	65
8.	Effect of using different concentrations of sucrose to produce	
	exopolysaccharide after 72 hours	67

9.	Effect of using different concentrations of glycerol to produce	69
	exopolysaccharide after 72 hours	
10.	Effect of using different concentrations of tri-sodium citrate to produce	
	exopolysaccharide after 72 hours	71
11.	Effect of using different concentrations of peptone to produce	
	exopolysaccharide after 72 hours	73
12.	Effect of using different concentrations of casein hydrolysate to	
	produce exopolysaccharide after 72 hours	75
13.	Effect of using different concentrations of tri-ammonium citrate to	
	produce exopolysaccharide after 72 hours	77
14.	Effect of using different concentrations of ammonium sulfate to	
	produce exopolysaccharide after 72 hours	78
15.	Effect of using different concentrations of urea to produce	70
	exopolysaccharide after 72 hours	80
16.	Effect of using different concentrations of di-potassium hydrogen	
	phosphate to produce exopolysaccharide after 72 hours	82
17.	Effect of using different concentrations of magnesium sulfate to	
	produce exopolysaccharide after 72 hours	84
18.	Effect of using different concentrations of manganese sulfate to	00
	produce exopolysaccharide after 72 hours	86
19.	The monosaccharides structure of the produced exopolysaccharide	88
20.	Fibrinolytic and anticoagulation activities of the bacterial	
	exopolysaccharides (Native) & (sulfated)	91
21.	Antibacterial activity of the isolated bacterial exopolysaccharides	
	(Native) and (sulfated) against E.coli	92