

Transition Metal Complexes of Some Hydrazones containing Sulfur: Synthesis and Application Studies

A Thesis Submitted By

Omima Mohamed Ibrahim Adly

B.Sc. & Ed. 2000 M.Sc. 2005

For The Degree of

Doctor of Philosophy Degree For the Teacher's Preparation In Science (Inorganic Chemistry)

To
Department of Chemistry
Faculty of Education
Ain Shams University

Cairo -2009

Transition Metal Complexes of Some Hydrazones containing Sulfur: Synthesis and Application Studies

By

Omima Mohamed Ibrahim Adly

B.Sc. & Ed. (2000) M.Sc. (2005)

Under the supervision of

1- Prof. Dr. Ali Mahmoud Taha

Prof. of Inorganic Chemistry, Faculty of Education, Ain Shams University.

2- Prof. Dr. Mahmoud Mohamed Mashaly

Prof. of Inorganic Chemistry, Faculty of Education, Ain Shams University.

3- Dr. Adel Abass Ahmed Emara

Ass. Prof. of Inorganic Chemistry, Faculty of Education, Ain Shams University.

Approval Sheet

Degree: Ph.D. Degree for Teacher's Preparation in Science (Inorganic Chemistry)

Title: Transition Metal Complexes of Some Hydrazones Containing Sulfur Compounds: Synthesis and Application Studies.

Candidate: Omima Mohamed Ibrahim Adly

This thesis has been approved by	Approved
1- Prof. Dr. Ali Mahmoud Taha	
2- Prof. Dr. Mahmoud Mohamed Mashaly	
3- Ass Prof Dr Adel Abass Ahmed Emara	

Prof. Dr. Shaker Labib Stefan

Head of Chemistry Department.

Faculty of Education.

Ain Shams University.

Acknowledgement

Thanking the most powerful and merciful Allah, I'd like to thank my dear professors, **Prof. Dr. Ali Mahmoud Taha** (Prof. of Inorganic Chemistry, Department of Chemistry, Faculty of Education, Ain Shams University), **Prof. Dr. Mahmoud Mohamed Mashaly** (Prof. of Inorganic Chemistry, Department of Chemistry, Faculty of Education, Ain Shams University), and **Dr. Adel Abass Ahmed Emara** (Ass. Prof. of Inorganic Chemistry, Department of Chemistry, Faculty of Education, Ain Shams University) for suggesting the point of this work and continuous guidance throughout all the stages of this research.

I wish to express my thanks to **Prof. Dr. Shaker Labib Astefan**, (Head of the Chemistry Department, Faculty of Education, Ain Shams University) and **Prof. Dr.El-Hossain Ali Reda** (earlier Head of the Chemistry Department, Faculty of Education, Ain Shams University) for facilities provided during the course of research work.

Also I'm thankful to all members of the staff in the Chemistry Department for their faithful cooperation.

Omima Mohamed Ibrahim Adly

Contents

List of Figures	i
List of Tables	vi
List of Structures	ix
List of Schemes	xi
List of abbreviations	xiii
Abstract	XV
Preface	xvi
Aim of the work	xvii
Chapter I	
INTRODUCTION	
LITERTURE SURVEY ON THE METAL COMPLEXES OF	
${\bf HYDRAZONES\ DERIVED\ FROM\ S-ALKYLDITHIOCARBAZATE}$	
LIGANDS 1	
(I) Metal Complexes with NS Bidentate Hydrazone Ligands and	1
Their Biological Activities	
(II)- Metal Complexes of Tridentate Hydrazone Ligands and	
Their Biological Activities	11
(II)-A- NNS Hydrazone Ligands	11
(II)-B- NOS Hydrazone Ligands	22
(III) Metal Complexes of N ₂ S ₂ Tetra-dentate Hydrazone Ligands	
and Their Biological Activities	25
$ (IV) \ Metal \ Complexes \ of \ N_3S_2 \ Pentadentate \ Hydrazone \ Ligands $	
and Their Biological Activities	27
(V) Metal Complexes of Miscellaneous Hydrazone Ligands	
and Their Biological Activities	28
Chapter II	
EXPERIMENTAL	
(A) Materials	33

(B)	Syntl	nesis of the hydrazone ligands	33
	(i)	Synthesis of S-Methyldithiocarbazate (SMDTC)	34
	(ii)	Synthesis of The Hydrazone Ligands	35
		(a) Synthesis of H ₂ L _a ligand	35
		(b) Synthesis of H ₂ L _b ligand	35
		(c) Synthesis of H ₃ L _c ligand	36
		(d) Synthesis of H ₂ L _d ligand	36
(C)	Syntl	nesis of the Hydrazone Metal Complexes	37
	(i) Re	eaction of Nickel(II) with H ₂ L _a to Form Complex (2)	38
	(ii) Re	eaction of Copper(II) with H ₂ L _b to Form Complex (8)	38
	(iii) l	Reaction of Chromium(III) with H ₂ L _b to Form Comple	X
	(12))	38
	(iv) R	eaction of Oxovandium(IV) with H ₃ L _c to Form Comple	ex
	(17	7)	39
	(v) Re	eaction of Cobalt(II) with H ₂ L _d to Form Complex (23)	39
	(vi) U	nsuccessful Trials	39
(D)	Qua	ntitative Analyses of Metal Cations by EDTA	40
	(i)	Determination of copper(II)	40
	(ii)	Determination of nickel(II)	40
	(iii)	Determination of cobalt(II)	40
	(iv)	Determination of iron(III)	41
	(v)	Determination of chromium(III)	41
	(vi)	Determination of cadmium(II) and Zinc (II)	42
(E)	Physi	ical Measurements	42
	(i)	FT-IR Spectra	42
	(ii)	Electronic Spectra	42
	(iii)	¹ H-NMR Spectra	42

CONTENTS

	(iv)	Mass Spectra	43
	(v)	Elemental Analyses	43
	(vi)	Magnetic Measurements	43
	(vii)	Molar Conductance	43
	(viii)	Thermal Gravimetric Analysis (TGA)	43
	(ix)	ESR Spectra	44
	(x)	Melting Points	44
	(xi)	Acid Dissociation Constant	44
		Chapter III	
		RESULTS AND DISCUSSION	
(A) I	R SPECT	TRA OF THE PREPARED LIGANDS	46
(B) I	ELECTRO	ONIC SPECTRA OF THE PREPARED LIGANDS	48
(C) I	MASS SP	ECTRA OF THE PREPARED LIGANDS	48
(D) ¹	H-NMR S	SPECTRA OF THE PREPARED LIGANDS	49
(E) A	ACID DIS	SOCIATION CONSTANT	51
(F) I	DISTRIBU	UTION OF THE DISSOCIATED SPECIES OF	
TH	IE HYDR	AZONES LIGANDS	53
(G) I	MOLECU	ULAR ORBITAL CALCULATIONS	54
		Chapter IV	
]	PHYSICO	OCHEMICAL STUDIES ON THE SOLID COMPLE	XES
(A)	INFRAR	ED SPECTRA	91
(B)]	ELECTE	RONIC, ¹ H-NMR AND ESR SPECTRA	94
	(i) Coppe	er (II) Complexes	94
(ii) Nicke	l (II) Complexes	98
(iii) Coba	lt (II) Complexes	103
(iv) Oxov	anadium (IV) Complexes	107

(v) Iron(III) Complexes	111
(vi) Chromium(III) Complexes	115
(vii) Zinc (II) Complexes	118
(viii) Cadmium (II) Complexes	122
Chapter V	
THERMAL GRAVIMETRIC ANALYSIS (TGA) AN	D
THERMODYNAMIC PARAMETERS	
(I) THERMAL GRAVIMETRIC ANALYSIS (TGA)	170
(A) TGA for the Metal Complexes of H ₂ L _a Ligand; Cu(II) Complex	1,
Co(II) Complex 3, Fe(III) Complex 5 and Cd(II) Complex 7	170
(B) TGA for the Metal Complexes of H ₂ L _b Ligand; Cu(II) Complex	
8, Ni(II) Complex 9, VO(IV) Complex 10 and Cr(III) Complex 12	2 175
(C) TGA for the Metal Complexes of H ₃ L _c Ligand; Ni(II) Complex	
15, Co(II) Complex 16, Fe(III) Complex 18 and Cd(II) Complex	20 179
(D) TGA for the Metal Complexes of H_2L_d ligand; $Co(II)$ complex 2	3,
VO(IV) Complex 24, Cr(III) Complex 25 and Cd(II) Complex 26	184
(II) THERMODYNAMIC PARAMETERS	201
Thermodynamic calculations for the metal complexes of Cu(II) comp	lex 1,
Ni(II) complex 9, Co(II) complex 16, VO(IV) complex 24, Cr(III) complex 25 and Cd(II) complex 26	203
Chapter VI	
BIOLOGICAL ACTIVITY	214
References	221
	221
Summary	

List of Figures

Figure No.	Title	Page
1.1.	The molecular structure of the complex $[Pd(L^1)_2]$.	2
1.2.	The molecular structure of the adducts Ni(L ⁵) ₂ (py) ₂ .1.5H ₂ O	4
	(2).	
1.3.	The molecular structure of the complex $Pd(L^6)_2$.	5
1.4.	The molecular structure of the complex $[Zn(L^8)_2]$.	7
1.5.	The molecular structure of the complex $[Cd(L^{11})_2]$.	8
1.6.	The molecular structure of the complex $[Ni(L^{14})_2]$	10
1.7.	The molecular structure of [Cu(L ¹⁷)(sac)(CH ₃ OH)] complex	12
1.8.	The molecular structure of the complexes $[Co(L^{27})_2]$ and	17
	$[Mn(L^{28})_2]$	
1.9.	The molecular structure of the complex $Sn(L^{30})I_3$.	18
1.10.	The molecular structure of the complex $[Zn(L^{32})_2]$	20
1.11.	The molecular structure of the complex $[Cd(L^{32})NCS]_2$	20
1.12.	The molecular structure of [Co(HL ³³) ₂] complex	21
1.13.	The molecular structure of the complex $[Sn(L^{46})I_2]$	28
3.1.	The infrared spectra of (a) H ₂ L _a ligand, (b) S-methyl-	65
	dithiocarbazate and (c) salicylaldehyde.	
3.2.	The infrared spectra of (a) H ₂ L _b ligand, (b) S-methyl-	66
	dithiocarbazate and(c) o-hydroxyacetophenone.	
3.3.	Infrared spectra of (a) H ₃ L _c ligand, (b) S-methyl-	67
	dithiocarbazate and (c) 4,6-diacetylresorcinol.	
3.4.	Infrared spectra of (a) H ₂ L _d ligand, (b) S-methyl	68
	dithiocarbazate and (c) 5-acetyl-4-hydroxy-2H-1,3-thiazine-	
	2,6(3H)-dione.	
3.5.	Relationships of $v_{C=N}$ vs δ_{NH} , $v_2(\text{in DMF})$ vs pK_1^H , $v_2(\text{in DMF})$	69
	$vs v_{C=N}$, and $\delta_{NH} vs v_{C=S}$.	
3.6	Electronic spectra of (a) H ₂ L _a and (b) H ₂ L _b ligands.	70
3.7	Electronic spectra of (a) H ₃ L _c and (b) H ₄ L _d ligands.	71

Figure No.	Title	Page
3.8	The mass spectrum of the hydrazone, H ₂ L _a , ligand.	72
3.9	The mass spectrum of the hydrazone, H ₂ L _b , ligand,	73
3.10	The mass spectrum of the hydrazone, H ₃ L _c , ligand.	74
3.11	The mass spectrum of the hydrazone, H ₂ L _d , ligand.	75
3.12	¹ H-NMR spectra of H ₂ L _a ligand in DMSO-d ₆ , (a) without	76
	D_2O and (b) with D_2O .	
3.13	¹ H-NMR spectra of H ₂ L _b ligand in deuterated dimethyl	77
	sulphoxide, DMSO- d_6 , (a) without D ₂ O and (b) with D ₂ O.	
3.14	¹ H-NMR spectra of H ₃ L _c ligand in deuterated dimethyl	78
	sulphoxide, DMSO- d_6 , (a) without D ₂ O and (b) with D ₂ O.	
3.15	¹ H-NMR spectra of H ₂ L _d ligand in deuterated	79
	dimethylsulphoxide, DMSO-d6, without D ₂ O (a) and with	
	D_2O (b).	
3.16	pH-Metric titration curves of H ₂ L _a , H ₂ L _b , H ₃ L _c ligands in	80
	75% (v/v) dioxan –water at 303 K and $V_o = 30$ mL.	
3.17	Relationships of pK ₁ ^H vs σ Taft, E _{HOMO} vs v ₂ (in DMF), E _{HOMO}	81
	$vs v_{C=N}$ and $E_{LUMO} vs v_2$ (in DMF)	
3.18	Distribution Curves of H ₂ L _a as a function of pH, α ₀ represent	82
	the undissociated H_2L_a and α_1 and α_2 are the curves of HL_a^-	
	and L _a anions; respectively.	
3.19	Distribution Curves of H_2L_b as a function of pH, α_0 represent	82
	the undissociated H_2L_b and α_1 and α_2 are the curves of HL_b^-	
	and L _b anions; respectively.	
3.20	Distribution Curves of H ₃ L _c as a function of pH, where	83
	α_0 represent the undissociated H_2L_c and α_1 and α_2 are the	
	curves of H ₂ L _c ⁻ and HL _c anions; respectively.	

Figure No.	Title	Page
3.21	Structures of (a) H ₂ L _a and (b) H ₂ L _b ligands	84
3.22	Structures of (c) H _c L _c and (d) H ₂ L _d ligands	85
4.1	IR spectra of (a) $[CuL_a]_2(1)$ and (b) $[Cu(L_b)]_2(8)$	140
4.2	IR spectra of (a) $[Cu(HL_c)]_2$ (14) and (b) $[CuL_d]_2.2H_2O$ (21)	141
4.3	IR spectra of (a) $[NiL_a]_2.H_2O$ (2) and (b) $[Ni(L_b)]_2$ (9)	142
4.4	IR spectra of (a) [Ni(HL _c)] ₂ .2H ₂ O (15) and (b)	143
	$[NiL_d(H_2O)_2]_2$.MeOH (22)	
4.5	IR spectra of (a) $[CoL_a(H_2O)_2]_2.H_2O$ (3) and (b)	144
	$[Co(H_2L_c)(H_2O)_2]_2(NO_3)_22H_2O$ (16)	
4.6	IR spectra of $[CoL_d(H_2O)_2]_2.H_2O$ (23)	145
4.7	IR spectra of (a) $[(VO)L_a(H_2O)]_2$ (4) and (b)	146
	$[VO(L_b)(H_2O)]_2.0.5H_2O$ (10)	
4.8	IR spectra of (a) [VO(HL _c)] ₂ (17) and (b)	147
	$[VOL_d(H_2O)]_2.2H_2O$ (24)	
4.9	IR spectra of (a) [FeL _a (CH ₃ OH) ₂] ₂ .(NO ₃) ₂ .H ₂ O (5) and (b)	148
	$[Fe(L_b)(H_2O)(C_2H_5OH)]_2(NO_3)_2$ (11)	
4.10	IR spectra of [Fe(HL _c)(CH ₃ OH)NO ₃] ₂ .H ₂ O.CH ₃ OH (18)	149
4.11	IR spectra of (a) $[Cr(L_b)(C_2H_5OH)_2]_2.(NO_3)_2.2H_2O$ (12) and	150
	(b) $[CrL_d(H_2O)(NO_3)]_2.4H_2O$ (25)	
4.12	IR spectra of (a) $[ZnL_a]_2.2H_2O$ (6) and (b) $[Zn(HL_c)]_2.6H_2O$	151
	(19)	
4.13	IR spectra of (a) $[CdL_a]_2.4H_2O$ (7) and (b) $[Cd(L_b)]_2.CH_3OH$	152
	(13)	
4.14	IR spectra of (a) [Cd(HL _c)] ₂ .H ₂ O (20) and (b)	153
	$[Cd(L_d)]_2.H_2O.MeOH (26)$	

Figure	Title	Page
No. 4.15	Electronic spectra of (a) $[CuL_a]_2$ (1) and (b) $[Cu(HL_c)]_2$ (14)	154
4.16	Electronic spectra of (a) [NiL _a] ₂ .H ₂ O (2) and (b)	155
	[Ni(HL _c)] ₂ .2H ₂ O (15)	100
4.17	Electronic spectra of (a) $[(VO)L_a(H_2O)]_2$ (4) and (b)	156
4.17	[VO(HL _c)] ₂ (17)	130
1 10		157
4.18	Electronic spectrum of $[Cr(L_b)(C_2H_5OH)_2]_2.(NO_3)_2.2H_2O$ (12)	157
4.19	Mass spectrum of $[CuL_a]_2$ (1) complex	158
4.20	Relationships of v/cm ⁻¹ of Cu(II) vs pk ₁ ^H , v/cm ⁻¹ of Cu(II) vs	158a
	v(C-S) of Cu(II) and vCo-N vs UV.	
4.21	X-Band ESR spectra of (a) $[CuL_a]_2$ (1) and (b) $[Cu(L_b)]_2$ (8)	159
	complexes.	
4.22	X-Band ESR spectra of (a) [Cu(HL _c)] ₂ (14) and (b)	160
	[CuL _d] ₂ .2H ₂ O (21) complexes	
4.23	The ${}^{1}\text{H-NMR}$ spectrum of $[\text{Ni}(L_b)]_2$ (9) in DMSO- d_6 .	161
4.24	Relationships of vCo-N vs v ₂ Co(II) (in DMF),	162
	ν VO-N ν s E _{HOMO} and ν VO (in DMF) ν s Σ pK ₁ + pK ₂ .	
4.25	X-Band ESR spectra of (a) [(VO)L _a (H ₂ O)] ₂ (4) and (b)	163
	$[VO(L_b)(H_2O)]_2.0.5H_2O$ (10)	
4.26	X-Band ESR spectra of (a) [VO(HL _c)] ₂ (17) and (b)	164
	$[VOL_d(H_2O)]_2.2H_2O$ (24)	
4.27	Relationships of Dq vs vFe-N and vCd-N vs E _{HOMO} .	165
4.28	The ${}^{1}\text{H-NMR}$ spectrum of $[\text{Zn}(\text{L}_{a})]_{2}.2\text{H}_{2}\text{O}$ (6) in DMSO- d_{6} .	166
4.29	The ¹ H-NMR spectrum of [Zn(HL _c)] ₂ 6H ₂ O (19) in DMSO- <i>d</i> ₆	167
	(a) without D ₂ O and (b)with D ₂ O.	
4.30	Mass spectrum of [CdL _a] ₂ .4H ₂ O (7) complex.	168
4.31	The ¹ H-NMR spectrum of [Cd(L _b)] ₂ .CH ₃ OH (13) in DMSO-	169
	d_6 .	

Figure	Title	Page
No. 5.1	The TGA-DrTGA curves of (a) [CuL _a] ₂ (1) and (b)	193
	$[CoL_a(H_2O)_2]_2.H_2O$ (3).	
5.2	The TGA-DrTGA curves of (a) [FeL _a (MeOH) ₂] ₂ .(NO ₃) ₂ .H ₂ O	194
	(5) and (b) [CdL _a] ₂ .4H ₂ O (7).	
5.3	The TGA-DrTGA curves of (a) $[Cu(L_b)]_2$ (8) and (b)	195
	$[Ni(L_b)]_2$ (9).	
5.4	The TGA-DrTGA curves of (a) $[VO(L_b)(H_2O)]_2.0.5H_2O$ (10)	196
	and (b) $[Cr(L_b)(C_2H_5OH)]_2.(NO_3)_2.2H_2O$ (12).	
5.5	The TGA-DrTGA curves of (a) [Ni(HL _c)] ₂ .2H ₂ O (15) and	197
	(b) $[Co(HL_c)(H_2O)_2]_2.(NO_3)_2.2H_2O$ (16).	
5.6	The TGA-DrTGA curves of (a) [Fe(HL _c)(CH ₃ OH) (NO ₃)] ₂ .	198
	(H ₂ O).CH ₃ OH (18) and (b) Cd(HL _c)] ₂ .H ₂ O (20).	
5.7	The TGA-DrTGA curves of (a) [CoL _d] ₂ .4H ₂ O (23) and (b)	199
	$[VOL_d(H_2O)]_2.2H_2O$ (24).	
5.8	The TGA-DrTGA curves of (a) $[CrL_d(H_2O)(NO_3)]_2.4H_2O$	200
	(25) and (b) [CdL _d] ₂ .H ₂ O.MeOH (26).	
5.9	Coats-Redfern plots for [CuL _a] ₂ (1).	203
5.10	Coats-Redfern plots for $[Ni(L_b)]_2$ (9).	204
5.11	Coats-Redfern plots for [Co(HL _c)(H ₂ O) ₂] ₂ .(NO ₃) ₂ .2H ₂ O (16).	205
5.12	Coats-Redfern plots for [VOL _d (H ₂ O)] ₂ .2H ₂ O (24).	206
5.13	Coats-Redfern plots for $[[CrL_d(H_2O)(NO_3)]_2.4H_2O$ (25).	207
5.14	Coats-Redfern plots for [CdL _d] ₂ .H ₂ O.MeOH (26).	208
1		

LIST OF TABLES

List of Tables

Tables	Title	Page
No. 3.1	Physical, analytical data and UV/Vis spectral data of the	55
	hydrazones, H ₂ L _a , H ₂ L _b , H ₃ L _c , and H ₂ L _d , ligands.	
3.2	Infrared frequencies (cm ⁻¹) of H ₂ L _a ligand, S-methyldithio	56
	carbazate and salicylaldehyde and their tentative assignments.	
3.3	Infrared frequencies (cm ⁻¹) of H ₂ L _b ligand, 2-hydroxy-	57
	acetophenone, S-methyldithiocarbazate and their tentative	
	assignments.	
3.4	Infrared frequencies (cm ⁻¹) of H ₃ L _c ligand, S-methyldithio	58
	carbazate and 4,6-Diacetylresorcinol, and their tentative	
	assignments.	
3.5	Infrared frequencies (cm ⁻¹) of H ₂ L _d ligand, S-methyldithio-	59
	carbazate and 5-acetyl-4-hydroxy-2H-1,3-thiazine-2,6(3H)-dione	
	and their tentative assignments.	
3.6	The ¹ H-NMR chemical shifts (ppm) of the hydrazone ligands and	60
	their assignments.	
3.7.	Calculations of the dissociation of the hydrazones in 75% (v/v)	61
	dioxane-water at 303 K; $[L] = 2.0 \times 10^{-3} \text{ mol dm}^{-3}$; $[KOH] = 0.065$	
	mol dm; $V_o = 30 \text{ mL}$; $\mu = 0.058 \text{ mol dm}^{-3} \text{ (KNO}_3)$.	
3.8.	Calculations of the dissociated species of of H ₂ L _a in 75% (v/v)	62
	dioxane-water at 303 K, $pK_1^H 9.40$ and $pK_2^H = 13.33$.	
3.9	Structural parameters data of the present ligands as calculated by	63
	the Hyperchem 7.5 program.	64
3.10	Relationships of the calculated structural parameters versus	124
	experimental data of the present hydrazones ligands.	
4.1	Physical and analytical data of the hydrazone, H ₂ L _a , ligand and its	125
	transition metal complexes.	
4.2	Physical and analytical data of the hydrazone, H ₂ L _b , ligand and its	126
	transition metal complexes.	
4.3	Physical and analytical data of the hydrazone, H ₃ L _c , ligand and its	
	transition metal complexes.	