

Ain Shams University Faculty of Engineering Structural Engineering Department

Lateral-torsional buckling of coped beams with corrugated webs

Submitted by:

Kareem Baher Sobhy Rizkalla

B.Sc. Civil Engineering Ain Shams University (2007)

A Thesis

Submitted in Partial Fulfilment for the Requirements of the Degree of Master of Science in Civil Engineering (Structural) From Faculty of Engineering – Ain Shams University

Supervised By:

Prof. Dr. **Abdelrahim Khalil Dessouki**

Professor of Steel Structures Structural Engineering Department Ain Shams University Prof. Dr.
Sherif Abd-Elbasset
Ibrahim

Professor of Steel Structures Structural Engineering Department Ain Shams University

APPROVAL SHEET

Student Name : Kareem Baher Sobhy Rizkalla

Title of the Thesis: "Lateral-torsional buckling of coped beams with

corrugated webs"

Degree : Master of Science in Civil Engineering

(Structural)

EXAMINERS COMMITTEE

Signature

Prof. Dr. Mohamad Ahmed Abdel-Mohsen Dabaon

Professor of Steel Structures Structural Engineering Department Tanta University

Prof. Dr. Adel Helmy Salem

Professor of Steel Structures Structural Engineering Department Ain Shams University

Prof. Dr. Abdelrahim Khalil Dessouki

Professor of Steel Structures Structural Engineering Department Ain Shams University

Prof. Dr. Sherif Abdel-Basset Ibrahim

Professor of Steel Structures Structural Engineering Department Ain Shams University

AUTHOR

Name : Kareem Baher Sobhy Rizkalla

Date of Birth : 13th of March, 1985

Place of Birth : Cairo, Egypt

Academic Degree : B.Sc. in Structural Engineering

University : Faculty of Engineering, Ain Shams University

Date of Degree : June 2007

Name: Kareem Baher Sobhy Rizkalla

Signature : KAReem Batter

Date : October 17, 2015

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of

Master of Science in Civil Engineering (Structural).

The work included in this thesis has been carried out by the author in the

Department of Structural Engineering, Ain Shams University, from

October 2011 to March 2015.

No part of this thesis has been submitted for a degree or a qualification at

any other university or institute.

Name: Kareem Baher Sobhy Rizkalla

Signature: KAReem Batter

Date : October 17, 2015

Ain Shams University Faculty of Engineering Structural Engineering Department

Lateral-torsional buckling of coped beams with corrugated webs

Submitted By: Kareem Baher Sobhy Rizkalla

Prof. Dr. Abdelrahim Khalil Dessouki

Prof. Dr. Sherif Abd-Elbasset Ibrahim

ABSTRACT

Supervised By:

This thesis deals with lateral torsional buckling of Coped beams with corrugated webs. Three-dimensional models are developed using a finite-element software package ABAQUS to investigate the influence of copes on the lateral-torsional buckling resistance of beams with corrugated webs.

It was found that there is a considerable reduction in the ultimate capacity of beams due to coping. This reduction depends upon the cope length and cope depth compared to un-coped corrugated beams. The coped beams with corrugated webs still have higher capacity than coped beams with flat webs.

In addition, due to the low stiffness in the longitudinal direction of the beam and the absence of the flange in the coped region, the web will have the tendency to elongate and the corrugation will flatten. These phenomena affect displacements both vertically and laterally, and result in large deformation that is not acceptable in engineering purposes. Strengthening solution is introduced in this research to solve this problem.

TABLE OF CONTENTS

ABSTRA	ACT	i
TABLE	OF CONTENTS	iii
ACKNO	WLEDGEMENTS	vi
NOTATI	IONS	vii
LIST OF	FIGURES	xi
LIST OF	TABLES	xx
INTROD	OUCTION	1
1.1	General	1
1.2	Problem Definition	1
1.3	Methodology	3
1.4	Outline of Thesis	4
LITERA	TURE REVIEW	7
2.1	Introduction	7
2.2	Coping Definition	7
2.3	Uses of Corrugated Steel	13
2.4	Lateral-Torsional Buckling of Beams with Corrugated Webs	s.17
2.4.	1 Lindner J. (1990) [1]	17
2.4.	2 Sayed-Ahmed EY. (2005) [3]	19
2.4.		
2.4.	, , , , , , , , , , , , , , , , , , ,	
2.4.		
2.5	Behavior of Coped Beams and Lateral-Torsional Buckling .	33
2.5.	1 Ajaya K. Gupta (1984) [6]	33
2.5.	2 Cheng and Yura (1986) [7]	34
2.5.	3 Cheng and Yura (1988) [8]	37
2.5.	4 Cheng and Yura (1988) [9]	42

2.5	5.5 Lam, et al. (2000) [10]	44
2.5	5.6 Yam et al. (2003) [11]	46
2.5	5.7 Maljaars, et al. (2005) [12]	49
2.6	Equivalent Moment Factor - Different Load and Supp	ort
Conc	litions	
2.7	Conclusions	54
NONL	NEAR FINITE ELEMENT MODELING TECHNIQUE	ES AND
	OATION	
3.1	Approach	57
3.2	Basics of Buckling and Post Buckling Analysis	58
3.3	Finite Element Modeling	60
3.4	Results from Finite Element Analysis	64
3.5	Comparison with Previous Researches	71
3.6	Conclusions	97
PARA	METRIC STUDY	99
4.1	Introduction	99
4.2	Parametric Finite Element Study	99
4.2	2.1 Detailed Result for Specimen CBCW-1	108
4.2	2.2 Detailed Results for Groups 1 and 2	111
4.2	2.3 Detailed Result for Group 4	119
4.2	2.4 Detailed Results for Groups 3, 5 and 6	123
4.2	2.5 Detailed Results for Groups 7 and 8	133
4.3	Conclusions	143
PROPO	OSED ANALYTICAL MODEL FOR LATERAL TORS	IONAL
BUCK	LING OF COPED BEAMS WITH CORRUGATED WE	BS145
5.1	Introduction	145
5.2	Coping Effect on Lateral Torsional Buckling	145

5.3	Buckling Coefficient Modification Factor	158
5.4	Comparing Equation to Finite Element Results	163
5.5	Analytical Procedure	169
PROPOS	SED BEAM WITH CORRUGATED WEBS	
STRENC	GTHENING TECHNIQUES	171
6.1	Objective	171
6.2	Beam Strengthening Finite Element Study	171
6.2.	1 Using of Flat Webs at the Ends Technique	174
6.2.	2 Using of Full depth Web Stiffener Technique	179
6.2.	3 Using of Continuous Flange along the Coping Profil	le
Tec	hnique	185
6.3	Conclusions of Hypothesis	192
SUMMA	ARY, CONCLUSIONS AND FUTURE RECOMMEND	ATIONS
		195
7.1	Summary	195
7.2	Conclusions	197
7.3	Future Recommendations	200
REFERE	ENCES	201
APPENI	DIX A	207

ACKNOWLEDGEMENTS

First and foremost, praises and thanks to the God, the Almighty, for His showers of blessings throughout my research work to complete the research successfully. The following document summarized years' worth of effort, frustration and achievement. However, there are several people with whom the author is indebted for their contribution in the research, study and dissertation of this thesis.

The author would like to express his deepest gratitude to his advisor, Prof. Dr. Abdelrahim Khalil Dessouki, for his patience, invaluable advices and suggestions. Without his it would be impossible to finish this thesis. The author would like to express his heartfelt thanks to Prof. Dr. Sherif Abd-Elbasset Ibrahim, for his valuable advices, help, corrections, support and generosity.

The author thanks his father, his beloved mother, his brother and whole family who has supported him throughout his academic trajectory that came as a result of pursuing his goals. He is also grateful to all his friends whose encouraging words kept me going.

Finally, and most importantly, the author would like to thank his wife Minerva. Her support, encouragement, quiet patience and unwavering love were undeniably.

NOTATIONS

a length of flat panel

b projection length of inclined panel

 b_f width of flange

c length of inclined panel

C_b equivalent moment coefficient, depending upon loading

conditions

 C_c cope length

 C_f width of compression flange from the web-flange joint to

the free edge of the flange

 $C_{w,FEM}$ warping constant of I-girder with corrugated webs from

finite element analysis

 $C_{w.Flat}$ warping constant of I-girder with flat webs

 $C_{w,co}$ warping constant of I-girder with corrugated webs

 C_w warping constant

 C_w^* warping constant of I-girder with corrugated webs from

result of Lindner

D beam depth

d depth of corrugation

 d_{Cc} cope depth

 d_{avg} average corrugation depth

 d_{max} maximum depth of corrugation E modulus of elasticity of steel

 e_o maximum magnitude of initial imperfection

 f_y yield stress of material

G shear modulus of flat plates

 G_{co} shear modulus of corrugated plates

 h_o depth of beam at coped region = $D - d_{cc}$

 h_w height of corrugated webs

 $I_{x,co}$ second moment of inertia about strong axis(x-axis) of I-

girder with corrugated webs

 I_x moment of inertia of I-section about x-x axis