Factors Affecting Arterial Blood Gases Analysis among Critically III Patients: A Suggested Nurses Performance Protocol

Thesis

Submitted for Partial Fulfillment of the Requirement Master Degree Nursing Science (Critical Care Nursing)

Ghada Kamal Ahmed

B.Sc. In Nursing
Faculty of Nursing, Benha University

Faculty of Nursing
Ain Shams University
2018

Factors Affecting Arterial Blood Gases Analysis among Critically III Patients: A Suggested Nurses Performance Protocol

Thesis

Submitted for Partial Fulfillment of the Requirement

Master Degree Nursing Science

(Critical Care Nursing)

Under Supervisions of

Prof. Kamelia Fouad Abd-Allah

Professor of Medical Surgical Nursing Faculty of Nursing- Ain Shams University

Dr. Dalia Ali Ameen

Lecturer of Medical Surgical Nursing Faculty of Nursing- Ain Shams University.

Faculty of Nursing
Ain Shams University
2018

In the name of Allah, the most kind and the most merciful.

Twish to express my thanks and deepest gratitude to **Prof. Dr. Kamelia Fouad Abd-Allah**, Professor of Medical Surgical Nursing, Faculty of Nursing, Ain Shams University, for her valuable ideas and assistant, as the study would have been very difficult without her guidance.

Twish to express my deepest and ultimate gratitude to Dr. Dalia Ali Ameen, Lecturer of Medical Surgical Nursing, Faculty of Nursing, Ain Shams University, for her precious help, moral support, fruitful advice and kind attitude. Treally have the honor to complete this work under her supervision.

I could never forget to offer my special thanks to the nursing staff for their participation which had great value to accomplish this study.

Ahmed Kamal Ahmed

Contents

Subjects Pa	ge
List of Abbreviations	I
List of Tables	III
List of Figures	VI
List of appendices	VIII
Abstract	IX
Introduction	1
Aim of the study	7
Review of literature	
• Over view about arterial blood gases analysis	9
• The Structure and function of blood vessels	13
• Nursing role regarding ABGs sampling techniq	ue18
• Nursing role regarding ABGs interpretation	25
Steps in arterial blood gas interpretation	37
 Nursing consideration regarding factors 	affecting
arterial blood gases analysis	51
Subjects and Methods	63
Results	75
Discussion	88
Conclusion	100
Recommendation	101
Summary	103
References	110
Appendices	123
Arabic Summary	

List of Abbreviations

Abbreviation	Meaning of abbreviation
ABGs	Arterial Blood Gases
BE	Base Excess
BF	Breathing Frequency
Ca_2^+	Calcium
Cl-	Chloride
CNS	Central Nervous System
CO ₂	Carbon Dioxide
CCU	Critical Care Unite
O_2	Oxygen
COPD	Chronic Obstructive Pulmonary Disease
CPAP	Continuous Positive Airway Pressure
DKA	Diabetic Ketoacidosis
ECF	Extracellular Fluid
FiO ₂	Fraction of Inspired Oxygen
\mathbf{H}^{+}	Hydrogen Ion
H ₂ CO ₃	Carbonic Acid
H ₂ O	Hydrogen Ions Dissolved in Water
HCl	Hydro Chloric Acid
HCO ₃	Bicarbonate
ICU	Intensive Care Unit
\mathbf{K}^{+}	Potassium
mEq/L	Milliequivalents Per Liter.
Mg^{2+}	Magnesium
mmHg	Millimeters Mercury

EList of Abbreviations &

Na ⁺	Sodium
P	phosphorus
PaCO ₂	Partial Pressure of Arterial Carbon Dioxide
PaO ₂	Partial Pressure of Arterial Oxygen
PAD	Peripheral Arterial Disease
pН	Power of Hydrogen
PO ₄ ³⁻	Phosphate
POC	Point of Care
SaO ₂	Saturation Arterial Oxygen
T.V	Tidal Volume

List of Tables

Tables in Review of Literature

Tab. No.	Title	Page
Table 1	Parameters affected by ongoing cellular	57
	metabolism	

Tables in Results

Tab. No.	Title	Page
Table 1	Frequency and percentage distribution of	76
	the studied nurses according to their	
	demographic characteristics	
Table 2	Frequency and percentage distribution of	77
	the studied nurses regarding their total	
	level of knowledge about ABGs sampling	
	technique and interpretation among	
	critical ill patients	
Table 3	Frequency and percentage distribution of	79
	the studied nurses regarding their total	
	level of knowledge about ABGs results	
	interpretation among critical ill patients	
Table 4	Frequency and percentage distribution of	80
	the factors affecting ABGs analysis	
	among critical ill patients as reported by	
	the studied nurses	

EList of Tables &

Tab. No.	Title	Page
Table 5	Frequency and percentage distribution of	83
	the studied nurses regarding their total	
	level of practice about ABGs sampling	
	techniques among critical ill patients	
Table 6	Relation between nurses demographic	84
	characteristics and their total level of	
	knowledge regarding ABGs analysis	
	among critical ill patients	
Table 7	Relation between nurses' demographic	85
	characteristics and their total level of	
	practice regarding ABGs sampling	
	technique among critical ill patients	
Table 8	Relation between nurses' demographic	86
	characteristics and factors affecting ABGs	
	analysis among critical ill patients as	
	reported by the studied nurses	
Table 9	Correlation between total knowledge,	87
	practice and factors affecting ABGs	
	analysis	

Tables in Review of Appendix IV

Fig. No.	Title	Page
Table 1	Experts judgment regarding general evaluation of content validity of self-administered questionnaire regarding knowledge about ABGs sampling technique and its interpretation and factors affecting ABGs analysis.	151
Table 2	Experts judgment regarding general evaluation of content validity of observational checklist regarding nurses' practice about ABGs sampling technique	152
Table 3	Cronbach's alpha reliability analysis of self-administered questionnaire regarding ABGs sampling technique and its interpretation and factors affecting ABGs analysis among critically ill patients	153
Table 4	Cronbach's alpha reliability analysis of observational checklist regarding nurses' practice about ABGs sampling technique	154

List of Figures

Figures in Review of Literature

Fig. No.	Title	Page
Figure 1	Body arteries	14
Figure 2	Anatomy of radial artery	16
Figure 3	Anatomy of femoral artery	17
Figure 4	Performing Allen's test	20
Figure 5	The ABGs sampling from femoral artery	22
Figure 6	The ABGs sampling from radial artery	23
Figure 7	Arterial line	24
Figure 8	The carbonic acid-bicarbonate buffer	35
	system	
Figure 9	Acid-base balance regulation	36

Figures in Appendix IV

Fig. No.	Title	Page
Figure 1	Job characteristics of expertise group	150
	who tested face and content validity of the tools	

List of Appendices

Appendix No	Title	Page
Appendix (I)	Self-administered questionnaire	123
Appendix (II)	Nurses practices observational checklists	134
Appendix (III)	Nursing performance protocol	148
Appendix (IV)	Validity & reliability	150
Appendix (V)	It represented descriptive analysis for three procedure regarding ABGs sampling technique	155

Abstract

Arterial blood gases (ABGs) analysis provides important information with regard to adequacy of ventilation, oxygen delivery to the tissues and acid-base balance. Interpretation of ABGs level can be difficult, especially if the nurse is under pressure to do it quickly and accurately. Aim: the study aimed to assess factors affecting arterial blood gases analysis among critically ill patients. Study design: a descriptive exploratory design was utilized to conduct this study. **Setting:** The study was conducted at Ain Shams Specialized Hospital in four intensive care units (Intensive Care Unit A, B & C and Coronary Care Unit). Subject: A convenient sample of all available nurses with total number 50 was `recruited in the previously mentioned units. **Data collection tools:** 1) Selfadministered questionnaire, 2) Nurses practices observational checklists. Results: the present study revealed that the most of the nurses had unsatisfactory level of knowledge, interpretations and level of practice (64%.64% & 80%) respectively. Many factors affecting negatively on ABGs analysis as reported by majority of the nurses namely job regulation related factors, nurses related factors, resource and sampling analysis related factors and patients related factors (100%,98%,86% & 76%) respectively. Conclusion: Based on the finding of the current study, it can be concluded that less than two third of the nurses had got unsatisfactory level of knowledge regarding ABGs sampling techniques and interpretation of its result. And most of them had got unsatisfactory level of practice regarding ABGs sampling techniques. In addition, many factors affecting negatively on ABGs analysis as reported by majority of the nurses under study namely; job regulation related factors, nurses related factors, resource and sampling analysis related factors and patients related factors. Recommendations: the suggested nurses' performance protocol for improving their knowledge& practice regarding ABGs analysis, taking into consideration the many factors affecting ABGs analysis as reported by the nurses under study should be available in all Critical Care Units in different hospitals.

Key words:

ABGs: Arterial blood gases.

Introduction

Arterial blood gases (ABGs) are a valuable tool in the assessment of a multiple of illnesses and injuries and it represents the criterion standard for determining a ventilated and non-ventilated patient's acid-base status. Critical care nurse caring for critically ill patients should be skillful in the continuous bedside assessment and management. The nurse needs to understand the issues related to the ABGs interpretation and skillfully perform the ABGs sampling technique (*Salem*, *2014*).

The ABGs are a test that measures partial pressure of arterial oxygen (PaO₂), partial pressure of carbon dioxide (PaCO₂), acidity of the arterial blood (pH), saturation arterial oxygen (SaO₂), and bicarbonate (HCO₃) concentration in arterial blood. Some blood gas analyzers also measure the methemoglobin, carboxyhemoglobin, and hemoglobin levels. Such information is vital when caring for patients with critical illness, respiratory, or metabolic diseases (*Theodore, Manaker & Finlay, 2017*).

The ABGs results are routinely used by critical care nurses to assess the respiratory and acid-base status of critically ill patients in Intensive Care Unit (ICU) setting. Accurate and timely interpretation of ABGs data can be