Abstract

Conjunctival infections cause a worldwide problem and affects people of different ages. Proper treatment can reduce symptoms, recovery time, contagious spread, possible re-infection and risk of complications but prolonged use of antibiotics can cause resistance strains. Infections with MDROs can lead to inadequate or delayed antimicrobial therapy.

Staphylococcus spp. is a clinically relevant pathogen due to its antimicrobial resistance and evasion of the host immune system. Its virulence factors in avoiding host responses and influencing disease make them able to form biofilm. Emergence of resistants staphylococci from the conjunctiva is of great concern because its virulence is related to the clinical outcome of ocular infections like keratitis or endophthalmitis.

Biofilm forming multidrug resistant *Staphylococcus* spp. are major reservoirs for transmission of ophthalmic infections. Various extracellular substances enable bacteria to form biofilm. Production of these components is dependent on the presence of biofilm-essential genes such as the *ica* operon.

The aim of this study was to determine association of *ica A* with biofilm formation in staphylococci isolated from patients with conjunctivitis, determine association of *ica A* gene with antibiotic resistance profile in *Staphylococci* causing conjunctivitis.

Fifty subjects suffering from staphylococcal bacterial conjunctivitis were included in this study. Specimen collection was done followed by identification for bacterial identification, antibiotic sensitivity test was done for each isolate to detect proper antimicrobial treatment. Biofilm formation was detected by CRA and MTP (phenotypic detection). Conventional PCR technique was done to detect the presence of *ica A* gene and its relation to the biofilm.

Among the 50 patients; 30 S. aureus (60%) and 20 CoNS (40%) were isolated.

Detection of *S. aureus* biofilm by MTP showed 8 strong biofilm forming isolates (26.7%), 7 moderate (23.3%), 3 weak (10%) and 12 negative (40%). While detection of biofilm of *S. aureus* by CRA showed 7 Strong (23.3%), 8 moderate (26.7%), 3 Weak (10%) and 12 negative (40%). Detection of *ica A* gene in *S. aureus* was found in 18 biofilm producing isolates by phenotypic methods and was not found in 12 biofilm producing isolates.

Keywords: Association of Intercellular Adhesion Gene A (ica A) with Biofilm Formation in Staphylococci Isolated from Patients with Conjunctivitis

Association of Intercellular Adhesion Gene A (ica A) with Biofilm Formation in Staphylococci Isolated from Patients with Conjunctivitis

Thesis

Submitted for partial fulfillment of MD degree in Basic Medical Sciences (Medical Microbiology & Immunology)

Presented By Mai Abdullatif Osman Al-Kaffas

M.B.B.Ch Kasr Al Ainy Master Degree of Medical Microbiology and Immunology Ophthalmology Research Institute, Cairo University

Under Supervision of

Prof. Dr. Taghreed Hamed Taha El khashaab

Professor of Medical Microbiology & Immunology Faculty of Medicine - Ain Shams University

Prof. Dr. Magda Hassan Mahran

Professor of Medical Microbiology & Immunology Ophthalmology Research Institute, Cairo University

Dr. Lamiaa Abdel Monem Adel

Assistant Professor of Medical Microbiology & Immunology Faculty of Medicine - Ain Shams University

Dr. Mona Saad Abdou

Lecturer of Medical Microbiology L Immunology Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2017

Acknowledgment

Thanks first and last to **ALLAH** for his guidance, support and care in every step throughout my life.

I have the greatest pleasure to express my deepest gratitude to **Prof. Dr. Taghreed Al Khashaab**, Professor of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University for her unlimited help, instructive guidance, valuable suggestions, criticism and supervision as well as her kindness, continuous encouragement, continuous advice and energetic help to ensure that this work would reach an updated level.

I wish to express my profound gratitude and sincere appreciation to **Prof. Dr. Magda Mahran,** Professor of Medical Microbiology and Immunology, Faculty of Medicine, Ophthalmology Research Institute for her kind help and assistance, valuable supervision, profuse knowledge, precious opinions and contributive comments that served much in the construction of this work.

I want to express my sincere gratitude to

Dr. Lamiaa Adel, Assistant Professor of Medical

Microbiology and Immunology, Faculty of Medicine, Ain Shams University for her guidance, valuable help and expert advices, unlimited support and faithful concern through out this study.

Also, I want to express my great thanks to **Dr. Mona Saad,** Lecturer of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, for her guidance, contious help and knowledge through out this study.

My greatest thanks and best regards to my all my staff members & colleagues in the department of Medical Microbiology and Immunology, Ain shams University & Ophthalmology Research Institute especially **Dr. Amira Saeed** for their cooperation and advice.

Lastly, I would like to express my deep thanks to my magnificent parents and spectacular sister

Dr. Marwa Al Kaffas; for their great support, patience, continuous encouragement and being my backbone.

Contents

Page	No.
List of tables	I
List of figures	IV
List of abbreviations	VII
Abstract	XI
Introduction & Aim of the work	1
Review of literature:	
Conjunctivitis	5
Staphylococcus and biofilm	20
Intracellular adhesion gene	42
Staphylococcus and drug resistance	50
Therapeutic approaches of staphylococcal biofilm	
Infection prevention and control	72
Materials and Methods	77
Results	95
Discussion	110
Summary & Conclusion	114
Recommendations	118
References	120
Arabic summary	١١

List of Tables

Table Number	Title	Page
Table (1)	Antibiotics used for antibiotic suseptipility testing for staphylococcal specis and their zones diameter breakpoints according to CLSI 2014	<u>81</u>
Table (2)	Frequencies (n) and percentages (%) of biofilm producing <i>S. aureus</i> by Congo red agar	<u>98</u>
Table (3)	Frequencies (n) and percentages (%) of biofilm producing in <i>S. aureus</i> by Microtitre plate	<u>98</u>
Table (4)	PCR results for ica A gene in S. aureus	<u>98</u>
Table (5)	Frequencies (n), percentages (%) and results of Wilcoxon signed rank test for association between MTP and CRA in detection of <i>S. aureus</i> biofilm	<u>99</u>
Table (6)	Frequencies (n), percentages (%) and results of Wilcoxon signed rank test for comparison between <i>ica A</i> gene presence and biofilm formation as detected by Microtitre plate in <i>S. aureus</i> microorganism	<u>96</u>
Table (7)	Frequencies (n), percentages (%) and results of Wilcoxon signed rank test for comparison between <i>ica A</i> gene presence and biofilm formation as detected by CRA in <i>S. aureus</i> microorganism	<u>101</u>

Table Number	Title	Page
Table (8)	Frequencies (n) and percentages (%) of biofilm production in CoNS by Congo red agar	<u>102</u>
Table (9)	Frequencies (n) and percentages (%) of of biofilm production in CoNS by Microtitre plate	<u>102</u>
Table (10)	Frequencies (n) and percentages (%) of CoNS by PCR	<u>102</u>
Table (11)	Frequencies (n), percentages (%) for association between MTP and CRA in detection of biofilm formation of CoNS	<u>103</u>
Table (12)	Frequencies (n), percentages (%) and results of Wilcoxon signed rank test for comparison between <i>ica A</i> gene presence and biofilm formation as detected by Microtitre plate in CoNS	<u>104</u>
Table (13)	Frequencies (n), percentages (%) and results of Wilcoxon signed rank test for association between <i>ica A</i> gene presence and biofilm formation as detected by Congo red method in CoNS	<u>105</u>
Table (14)	Frequencies (n) and percentages (%) of sensitivity and resistance of <i>S. aureus</i> to different antibiotics	<u>106</u>

Table Number	Title	Page
Table (15)	Frequencies (n), percentages (%) and results of Wilcoxon signed rank test for the association between <i>ica A</i> gene and MDR in <i>S. aureus</i>	<u>107</u>
Table (16)	Frequencies (n) and percentages (%) of sensitivity and resistance of CoNS to different antibiotics	<u>108</u>
Table (17)	Frequencies (n), percentages (%) and results of Wilcoxon signed rank test for the association between <i>ica A</i> gene and MDR in CoNS microorganism	<u>109</u>

List of Figures

Figure Number	Title	Page No.
Figure (1)	Conjunctivitis	<u>5</u>
Figure (2)	Viral conjunctivitis purulent discharge	<u>8</u>
Figure (3)	Chlamydial Conjunctivitis	<u>10</u>
Figure (4)	Pathogenic factors of <i>S. aureus</i> , with structural and secreted products both playing roles as virulence factors. <i>A:</i> Surface and secreted proteins. <i>B</i> and <i>C:</i> Cross sections of the cell wall	<u>13</u>
Figure (5)	Different phases of biofilm formation	<u>27</u>
Figure (6)	Mature biofilm	<u>28</u>
Figure (7)	Mechanism of quorum sensing	<u>37</u>
Figure (8)	Role of quorum sensing in biofilm: QS is involved in regulating different steps of biofilm development, including attachment, maturation and dispersal of biofilm	<u>37</u>
Figure (9)	Model of ica dependent (a) and ica independent (b) biofilm mechanisms in staphylococci	<u>44</u>

Figure Number	Title	Page No.
Figure (10)	A plate of blood agar medium cultured with an isolate showing complete hemolysis	<u>81</u>
Figure (11)	Congo red agar showing biofilm production and non biofilm production	<u>84</u>
Figure (12a)	Strong biofilm CRA	<u>84</u>
Figure (12b)	Intermediate biofilm CRA	<u>84</u>
Figure (12c)	Weak biofilm CRA	<u>84</u>
Figure (13)	MTP with different degrees of biofilm formation	<u>88</u>
Figure (14)	PCR reading by UV light gel documentation system	<u>93</u>
Figure (15)	Showing S. aureus and CoNS percentage	<u>95</u>
Figure (16)	A cultured plate of blood agar medium showing complete hemolysis of <i>S. aureus</i>	<u>96</u>
Figure (17)	Mannitol salt agar showing yellow colonies indicating <i>S. aureus</i>	<u>96</u>
Figure (18)	Catalase test showing a positive Staphylococcus colony	<u>97</u>
Figure (19)	Dry spot stapytect plus test showing agglutination in the indicates a positive test for <i>S. aureus</i>	<u>97</u>

Figure Number	Title	Page No.
Figure (20)	Bar chart representing association between findings of <i>S. aureus</i> biofilm by MTP & CRA	<u>99</u>
Figure (21)	Bar chart representing association between presence of <i>ica A</i> gene and biofilm formation as detected by MTP	<u>100</u>
Figure (22)	Bar chart representing association between presence of <i>ica A</i> gene and biofilm formation in <i>S.aureus</i> as detected by Congo Red method	<u>101</u>
Figure (23)	Bar chart representing association between findings of CoNS by MTP and CRA	<u>103</u>
Figure (24)	Bar chart representing association between presence of <i>ica A</i> gene and biofilm formation as detected by MTP	<u>104</u>
Figure (25)	Bar chart representing association between presence of <i>ica A</i> gene and biofilm formation in CoNS as detected by Congo red agar	<u>105</u>
Figure (26)	Bar chart representing association between findings of <i>ica A</i> gene presence and MDR for <i>S.aureus</i>	<u>107</u>
Figure (27)	Bar chart representing association between findings of <i>ica A</i> gene presence and MDR for CoNS	<u>109</u>

List of Abbreviations

Aap	Associated accumulation protein
Agr	Accessory gene regulatory
AHL	Acylated homoserine lactone
AI	Auto Inducer
AIP	Auto inducing cyclic thiolactone peptides
AK	Amikacin
AMP	Ampicillin
AMR	Antimicrobial resistance
AMX	Amoxicillin
Bap	Biofilm associated protein
ВНІ	Brain heart infusion agar
CDC	Centers for Disease Control and Prevention
clfB	Clumping factor B
CLSI	Clinical and laboratory standards institute
CN	Gentamycin
CoNS	Coagulase negative staphylococci
СР	Capsular polysaccharide
C/P	Ciprofloxacin
CRA	Congo Red Agar
CRO	Ceftraixone
DA	Clindamycin
DNase	Deoxyribonuclease

Dpnag	De poly-N-acetylated glucosamine
Edna	Extracellular Deoxyribonucleic acid
DspB	Dispersin B
${f E}$	Erythromycin
ECDC	European Centre for Disease Prevention and Control
EPS	Extracellular polymeric substances
FnBP	Fibronectin binding protein
FOX	Cefoxitin
HIV	Human immunodeficiency virus
HSV	Herpes simplex virus
Ica	Intracellular adhesion gene
IL	Interleukin
IOL	Intraocular lenses
LZD	Linezolid
LPS	Lipopolysaccharides
M.B.E.C	Minimum biofilm eradication concentration
МНА	Muller Hinton agar
MRSA	Methicillin resistant S. aureus
MSCRAMM	Microbial Surface Components Recognizing Adhesive Matrix Molecules
MSSA	Methicillin sensitive S. aureus
MTP	MicroTitre plate

N. gonorrhoeae	Neisseria gonorrhoeae
OD	Optical density
ODc	Cut-off value
OPD	Ophthalmology outpatient department
P	Penicillin
P. aeruginosa	Pseudomonas aeruginosa
PBP	Penicillin binding protein
PDR	Pan drug resistant
PIA	Polysaccharide intercellular adhesin
PNAG	Poly N- acetylglucosamine
PSM	Phenol soluble modulin
PVC	Polyvinyl chloride
QQ	Quorum quenching
QRDR	Quinolone resistance determining region
QS	Quorum sensing
RD	Rifampicin
S. aureus	Staphylococcus aureus
S. capitis	Staphylococcus capitis
S. caprae	Staphylococcus caprae
S. chromogenous	Staphylococcus chromogenes
S. epidermidis	Staphylococcus epidermidis
S. hominis	Staphylococcus hominis
S. hyicus	Staphylococcus hyicus

S. pneumoniae	Streptococcus pneumoniae
S. saprophyticus	Staphylococcus saprophyticus
SCCmec	Staphylococcal cassette chromosome mec
SCV	Small colony variant
SE	Staphylococcal Enterotoxin
TMP-SXT	Trimethoprim Sulphamethoprim
TSB	Tryptic soy broth
TSST	Toxic Shock Syndrome Toxin
VA	Vancomycin
VISA	Vancomycin intermediate resistant <i>S. aureus</i>
VKC	Vernal keratoconjunctivitis
VRSA	Vancomycin drug resistance
VZV	Varicella Zoster virus
XDR	Extensively drug resistant