Doppler-Guided Hemorrhoidal Artery Ligation

Thesis
Submitted In Partial Fulfillment of M.D.
Degree in General surgery

By Salah El-Din Mohamed Ahmed Atia $MB.\ B.ch,\ M.Sc.$

Supervised by **Dr. Awad Hassan Al-Kayal**

Professor of General Surgery
Faculty of Medicine, Ain shams University

Dr. Hossam Fahmy Abd-El Hamid

Professor of Diagnostic Radiology
Faculty of Medicine, Ain shams University

Dr. Mohamed Mahfouz Mohamed

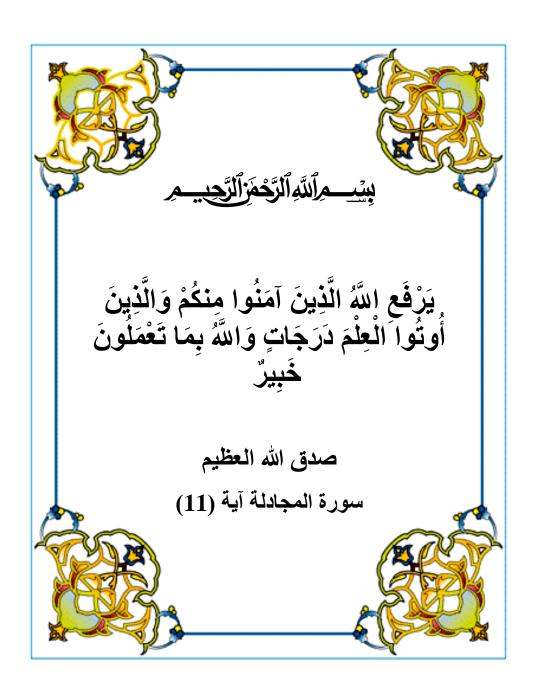
Lecturer of General Surgery
Faculty of Medicine, Ain shams University

Faculty of Medicine
Ain Shams University
2015

Acknowledgement

Thanks first and last to ALLAH

I would like to express my great and profound gratitude sincere appreciation to my teacher **Prof. Dr. Awad Hassan**Al-Kayal, professor of general surgery, faculty of medicine Ain-shams University, who gave me the privilege of working under his supervision. To him words of thanks or gratitude are not sufficient.


My sincere appreciation goes to **Prof. Dr. Hossam Fahmy Abd-El Hamid,** Professor of Diagnostic Radiology, Faculty of Medicine, Ain-shams University, for his kind support and help during this work.

My true feeling of sincere appreciation to **Dr. Mohamed Mahfouz Mohamed,** Lecturer of General Surgery, Faculty of Medicine, Ain-shams University, for his precious advices. Kindly he supplied me with all necessary facilities for success.

I also should thank all my professors, my colleagues and all the persons who helped me finishing this work.

Last but not least, I have to add my love and profound appreciation for my family and may fiancé for their great support and love.

Abstract

BACKGROUND: Doppler-guided hemorrhoidal artery ligation is a minimally invasive technique for the treatment of symptomatic hemorrhoids that has been applied successfully for grade II and III hemorrhoids but is less effective for grade IV hemorrhoids. **OBJECTIVE**: The evaluation of Doppler-guided hemorrhoid artery ligation as operative treatment option for the treatment of hemorrhoids. **DESIGN**: Prospective observational study. **SETTING**: Ain-shams University hospitals. **PATIENTS**: Thirty consecutive patients with grade II and III hemorrhoids treated from February 2012 to June 2014. **INTERVENTION**: Hemorrhoidal artery ligation. MAIN OUTCOME MEASURES: Operating time, number of ligations, and postoperative symptoms were recorded. Pain was graded on a visual analog scale. Follow-up was at one week, 1, 3, 6 and 12 months after surgery. **RESULTS**: A total of 30 consecutive patients (12 women, 18 men) with grade II and III hemorrhoids were included. Preoperative Symptoms were fresh bleeding related to defecation (90%), prolapse (100%), prurities (17%) and discharge (10%). The mean operative time was 30.0 min. ± 14 . Minutes (range, 20-40) minutes, with a mean of 8 (range, 6-10) ligations placed per patient. **COMPLICATIONS:** Intraoperative *bleeding* in 2 patients, 12 patients developed postoperative complications: One case of Postoperative bleeding, One case of Postoperative discharge, urine retention of 9 patients. Recurrence was observed in 1 patient (3%), hospital stay was mean \pm SD = 28.8 h. \pm 8.4h, (range 24-36 hours), with a mean follow-up of 11 (range, 6-16) months. **CONCLUSION**: Doppler-guided hemorrhoidal artery ligation is safe, easy to perform, and should be considered as an effective operative option for the treatment of grade II and III hemorrhoids.

Keywords: Doppler-guided Hemorrhoidal artery ligation (DGHAL) =
Non-Excisional Hemorrhidectomy = Transanal Hemorrhoidal
Dearterlization = hemorrhoidal artery ligation under control of
Doppler.

List of Abbreviations

ADLs : Activities of daily living

BC: Before Christ

Cms : Centimeters

CCR : Corpus cavernosum recti

Co : Company

CO2 : Carbon dioxide

Corp : Corporation

E.C.G: Electrocardiography

EEA : End-to-end anastomosis

HAL: Hemorrhoidal Artery Ligation

HALO: Hemorrhoidal Artery Ligation Operation

HIV : Human immunodeficiency virus

Hrs : Hours

ICR : Infrared coagulator

IMV : Inferior mesenteric vein

GI : Gastrointestinal

kHz : kilohertz

KM : Kazumasa Morinaga

Liq : Liquid

LS : Ligasure

MM : Millimeters

Mm Hg : Millimeter of mercury

NANC: Non-adrenergic and non-cholinergic fibers

NaOH : Sodium hydroxide

ND/YG: Neodymium-doped yttrium aluminium garnet

N2 : Nitrogen gas

N20 : Nitrous oxide

NSAID: Non steroidal anti- inflammatory drugs

NS : Not specified

RBL: Rubber band ligation

RCT . Random controlled trial

RF : Radiofrequency

SRA : superior rectal artery

THD: Transanal Hemorrhoidal De-arterialization

TM: Trade Mark

V : Voltage

VAS: Visual analogue scale

List of Tables

Table Number	Table caption	Page
Table (1)	Causes of anal incontinence.	41
Table (2)	Landmarks in anorectal surgery.	64-65
Table (3)	Suggested management plan of grades	79
	of hemorrhoids.	
Table (4)	Pain scoring.	126
Table (5)	Distribution of age and sex.	132
Table (6)	Range and Mean ± SD of symptoms	133
	before surgery.	
Table (7)	Symptoms before surgery in the	134
	patients treated by Doppler-guided	
	hemorrhoidal artery ligation.	
Table (8)	Operative time in minutes and	135
	hospital stay in hours in patients	
	treated by Doppler-guided	
	hemorrhoidal artery ligation.	
Table (9)	Intra and postoperative bleeding in	135
	patients treated by Doppler-guided	
	hemorrhoidal artery ligation.	
Table	Postoperative urinary retention in	137
(10)	patients treated by Doppler-guided	
	hemorrhoidal artery ligation.	
Table	Postoperative pain in patients treated	138
(11)	with Doppler-guided hemorrhoidal	
	artery ligation.	

Table Number	Table caption	Page
Table	Postoperative discharge in patients	139
(12)	treated by Doppler-guided	
	hemorrhoidal artery ligation.	
Table	Return to normal daily activities in	140
(13)	patients treated by Doppler-guided	
	hemorrhoidal artery ligation.	
Table	Patient satisfaction in patients treated	141
(14)	by Doppler-guided hemorrhoidal	
	artery ligation.	
Table	Comparison between Grade II and	142
(15)	Grade III hemorrhoids.	
Table	Distribution of postoperative	144
(16)	complications.	
Table	Results of studies performed on	150
(17)	Doppler guided hemorrhoidal artery	
	ligation technique.	

List of figures

Figure Number	Figure caption	Page
Figure (1)	Embryo at 5 th weeks.	7
Figure (2)	Development of the anus and Rectum.	8
Figure (3)	Anal canal.	9
Figure (4)	Puborectalis.	16
Figure (5)	Levator ani viewed from below.	16
Figure (6)	Arterial Supply of the Rectum and Anal Canal.	20
Figure (7)	Venous drainage of the rectum and anal canal.	22
Figure (8)	Lymphatic drainage of the anal canal.	23
Figure (9)	The curves of the rectum.	29
Figure (10)	Relations of the rectum.	31
Figure (11)	Relations of the rectum: female and male.	31
Figure (12)	Fascial relationships of the rectum: A male, B female	32
Figure (13)	Blood supply of the anal canal and rectum.	34
Figure (14)	The Venous Drainage of the Rectum.	36
Figure (15)	Proctoscopy showing internal Hemorrhoids at 3, 7, & 11 O'clock positions.	53

₹ Introduction & Aim of the work ∠

Figure Number	Figure caption	Page
Figure (16)	Diagram demonstrating the anatomy	54
	of both internal and external	
	hemorrhoids.	
Figure (17)	Anatomical classification of	55
	hemorrhoids.	
Figure (18)	(A) Third-degree hemorrhoids. (B)	55
	Prolapsed thrombosed piles.	
Figure (19)	A thrombosed external hemorrhoid.	56
Figure (20)	Location of hemorrhoids.	57
Figure (21)	Diagram showing the grades of	60
	hemorrhoids.	
Figure (22)	(A) Ives Fansler Anoscope. (B) a	67
	clear plastic anoscope.	
Figure (23)	Proctoscope.	71
Figure (24)	Portable Sitz bath.	79
Figure (25)	Banding an internal hemorrhoid.	84
Figure (26)	Infrared coagulator IRC2100 TM .	89
Figure (27)	Infrared photocoagulation.	89
Figure (28)	Open (Milligan-Morgan) hemo-	96
	rrhoidectomy.	
Figure (29)	Modified Ferguson excisional	103
	hemorrhoidectomy.	
Figure (30)	Hemorrhoidectomy using Ligasure.	105
Figure (31)	Sealing of the vascular pedicle using	105
	the Ligasure device.	

₹ Introduction & Aim of the work ∠

Figure Number	Figure caption	Page
Figure (32)	Place a purse-string suture.	107
Figure (33)	Stapling device with circumferential	108
	excision of anal canal and	
	hemorrhoid mucosa.	
Figure (34)	A diagram showing the particle	113
	motion induced by an ultrasound	
	wave as a function of time.	
Figure (35)	The particle motion in a medium	114
	where the ultrasound wave is	
	propagating as a function of	
(2.5)	location.	120
Figure (36)	THD device description.	120
Figure (37)	A-Ultrasound (Doppler) probe used	120
	to identify the arterial vascular	
	pedicle B- Multiple hemorrhoidal	
	vascular pedicles tied off.	
Figure (38)	Location of terminal branches of 121	
	superior rectal arytery.	
Figure (39)	Simple and numeric pain intensity 126	
	scale.	
Figure (40)	The rating of pain.	127
Figure (41)	The material used for hemorrhoidal	
	artery ligation under control Doppler	
Figure (42)	Distribution of age in the patients.	132
Figure (43)	Distribution of sex in the patients.	133
Figure (44)	Symptoms before surgery in patients	134

₹ Introduction & Aim of the work ∠

Figure Number	Figure caption	Page
	treated by Doppler-guided	
	hemorrhoidal artery ligation.	
Figure (45)	Intra and postoperative bleeding in	136
	patients treated by Doppler-guided	
	hemorrhoidal artery ligation.	
Figure (46)	Postoperative urinary retention in	137
	patients treated by Doppler-guided	
	hemorrhoidal artery ligation.	
Figure (47)	Postoperative pain scoring from Day	138
	0 to day 7.	
Figure (48)	Return to normal daily activities in	140
	patients treated by Doppler-guided	
	hemorrhoidal artery ligation.	
Figure (49)	A- pre-operative appearance of	142
	selected case from the study. B- 3	
	months post-operative follows up of	
	the same case.	
Figure (50)	A- pre-operative appearance of	143
	selected case from the study B- one	
	week post-operative appearance of	
	the same case.	

Contents

Subjects	Page
List of Abbreviations	I
List of tables	III
List of figures	V
• Abstract	IX
Introduction & Aim of the Work	1
• Review of literature	
1. Anatomy of hemorrhoids	5
2. Etiology and pathogenesis of hemo	orrhoids37
3. Management of hemorrhoids	63
4. Doppler-guided hemorrhoidal arter	y ligation113
Patients and Methods	124
• Results	132
• Discussion	146
Summary and conclusion	153
• References	156
Arabic summery	

Introduction

Hemorrhoids affect between 4 and 36 percent of the population. The pathogenesis of this disease remains controversial but might be a conjunction of the two theories often discussed: the mechanical explanation in which the muscular fibroplastic supportive tissue of the hemorrhoidal plexus degenerates and the vascular explanation in which the arteriovenous shunts open, leading to dilation of the hemorrhoidal venous plexus. Based on this, several operative techniques have been used to correct or remove the sliding hemorrhoids (*Faucheron* and *Gangner*, 2008).

By reducing the inflow, the plexus diminishes and the hemorrhoids shrink. This seems especially effective in Grade II and III hemorrhoids. The Doppler probe allows an accurate localization of all the arteries, which are individually ligated with figure-of-eight sutures. This serves to bunch up the mucosa, which results in a pulling-up of the prolapse while interrupting the blood supply. The hemorrhoidal artery ligation HAL technique results in minimal postoperative discomfort but no pain in

comparison with hemorrhoidectomy (*Eugeny and Sergey*, 2008).

In 1995, a Japanese surgeon *Kazumasa Morinaga* reported a new technique for the treatment of hemorrhoids (HAL), which uses a specially designed proctoscope coupled with a Doppler transducer for identification and ligation of hemorrhoidal arteries. He designed a special instrument, which contained a Doppler transducer and a window, which permitted the surgeon to identify and ligate the hemorrhoidal arteries by placing a suture (stitch) around them. This is a simple maneuver, which produced prompt resolution of most of the hemorrhoidal symptoms of bleeding and protrusion (*Scheyer et al.*, 2006).

Doppler-guided ligation of the hemorrhoidal artery is a safe and effective alternative to hemorrhoidectomy and is associated with minimal discomfort and low risk of complications (*Felice et al.*, 2005). It reduces the need for conventional hemorrhoid surgery where rubber band ligation has been unsuccessful (*Conaghan and Farouk*, 2009).

Doppler-guided hemorrhoidal artery ligation with rectoanal repair is easy to perform and should be considered as an effective option for the treatment of grade IV hemorrhoids (*Faucheron et al.*, 2011). Because the arteries carrying the blood inflow are ligated, internal