دراسة مقارنة على مؤشرات وراثية وخلوية وجزيئية للتسمم بالمعادن الثقيلة في فئران المعمل (مس ماسكيولس)

رسالة مقدمة الى كلية العلوم-جامعة القاهرة لاستيفاء الدراسة المقررة لدرجة الماجستير فى العلوم علم الحيوان علم الحيوان (وراثة)

رسالة مقدمة من هيدان مصطفى سالم عبد الهادى بكالوريوس علوم — جامعة القاهرة قسم علم الحيوان - كلية العلوم جامعة القاهرة

Comparative study on cytogenetic and molecular biomarkers of heavy metal toxicity in the laboratory mice (Mus Musculus)

A Thesis

Submitted to Faculty of Science, Cairo University
In Partial Fulfillment of the Requirements for the degree of
M.Sc. In Zoology

(Genetics)

By

Haidan Mostafa Salem El Shorbagy

B.Sc. Cairo University

Zoology Department
Faculty of Science
Cairo University

APPROVAL SHEET

Title of the M.Sc. Thesis

"Comparative study on Cytogenetic and Molecular biomarkers of Heavy metal toxicity in the laboratory mice (*Mus musculus*)"

Name of Candidate

Haidan Mostafa Salem ElShorbagy

Submitted to

Zoology Department Faculty of Science, Cairo University

Faculty of Science, Benha University

Head of Zoolog Department Faculty of Science Cairo University Prof. Dr.Kawther S. Abou El-Ala

TO

My Family

My Husband

And

My daughters

Hala and Jana

Acknowledgment

I would like to express my most sincere gratitude to Prof. Dr Akmal A.El Ghor prof. of Genetics, Zoology Department, Faculty of Science, Cairo University, for his useful guidance, supervision and careful reading and criticizing the manuscript. His effort in putting this thesis in its final form is greatly appreciated.

I also wish to express my deep appreciation to Dr. Magda M.Noshy, Associate professor of Genetics, Zoology Department, Cairo University for her keen supervision, as well as the revision of the manuscript and unlimited help.

Sincere thanks to Dr. Mohammed Awwad, Associate professor of molecular biology, Zoology Department, Faculty of Science, Banha University, for his helpful and guidance during the investigation as well as for careful reading of manuscript.

My profound gratitude to my family, my aunt Zozo and my husband.

Finally, I wish to thank all members of Zoology Department, Faculty of Science, Cairo University, for their cooperation.

Contents

	Page
List of tables	V
List of figures	VI
Abstract	IX
Chapter I: Introduction and aim of work	1
Chapter II: Literature review	٤
Y, Y. The genetic biomarkers	٤
۲,۱,۱. Cytogenetic biomarkers	٥
۲,۱,۲. Molecular biomarkers	٦
a. The hybridization-based markers	٧
b. The PCR-based markers	٨
۲,۲. Heavy metals	٩
۲,۲,۱. Cadmium.	١.
A. Physical properties	١.
B. Existing and using	١.
C. Cadmium exposure	١.
D. Absorption and distribution	11
E. Metabolism	١٣
F. Excretion	١٣
G. Toxicity	1 £
H. Genotoxicity	10
H.\.Prokaryotic	10
H. ^Y . In vitro	١٦
H.Y.Y. Human blood lymphocytes	١٦
H.Y.Y. Another mammalian cells	١٦
H.".In vivo	1 V
H. ^r .\. In human	1 🗸
H. ^٣ . ^٢ . In animal	1 V
I- Carcinogenicity	19
I.). In human	19
I.Y. In animal	۲.

',Y,Y. Lead	Page
	71
A. Physical properties P. Evisting and using	71
B. Existing and using	77
C. Lead exposure	77
D. Absorption and distribution E. Metabolism	7
F. Excretion	7
G. Toxicity	7 £
H. Genotoxicity	70
H.\.Prokaryotic	70
H. 7. In vitro	, 7 V
H.Y.Y. Human blood lymphocytes	77
H. Y. Y. Another mammalian cell	77
H In vivo	7 7
H. T. 1. In human	۲٧
H. T. Y. In Animal	۲۸
I- Carcinogenicity	۲۹
I.\. In human	۲۹
I. ⁷ . In animal	۲9
",".Metallothioneins	٣.
CHAPTER 7: Materials and methods	٣٤
۳, ۱. Experimental animals	٣٤
۳٫۲. Test substances	٣٤
T,T. Determination of the maximum tolerated dose (MTD) or LD.	40
۳,۳,۱. Cadmium chloride	40
۳,۳,۲. Lead acetate	40
۳٫٤. Treatment scheduale	40
۳,٤,١. Acute treatment	40
a) Cadmium chloride	40
b)Lead acetae	40
Ψ, ξ, Υ. Subchronic treatment	40
a) Cadmium chloride	٣٦
b)Lead acetae	41

	Page
۳٫۰. Animal groups	77
۳٫٦. Cytogenetic assay	٣٧
۳,٦,١.Micronucleus test	47
a- Slide preparation	٣٧
b- Scoring	٣٨
c- Statistical analysis	٣٨
™, V. Molecular assay	٣٨
۳,۷,۱. PCR/RFLP assay	٣٨
A. DNA extraction	٣٨
I. Cell lysis	٣9
II. Protein precipitation	٣9
III. DNA precipitation	٣9
IV. DNA hydration	٣9
B. DNA quantification	٣9
C. Amplification by Polymerase chain reaction (PCR) of the	٤.
mouse MT- Igene from the genomic DNA	
I. PCR primers	٤١
II. PCR mixture	٤١
III. Amplification condition	٤١
D. Restriction Fragment Length Polymorphism (RFLP)	٤٢
I. Selected endonucleases enzymes	٤٢
II. Digestion of PCR product	٤٢
E. Separation of the digested polymerase chain reaction (PCR)	٤٣
products by electrophoresis	
۳,۸. Reagents	٤٤
CHAPTER 4: Results	٤٧
٤,١. Determination of the maximum tolerated dose (MTD) or LD.	٤٧
٤,١,١. Cadmium chloride	٤٧
٤,١,٢ . Lead acetate	٤٨
٤,٢. Micronucleus Assay	٤٩
٤,٢,١. The effects of acute and subacute administration of	٤٩
cadmium chloride and lead acetate on the frequency of	
Micronucleated polychromatic erythrocytes (MNPCEs)	

in bone marrow cells of mice

	Page
٤,٢,١,١. Cadmium chloride	
a- Acute treatment	٤٩
b- Subchronic treatment	٤٩
٤,٢,١,٢. lead acetate	٥,
a- Acute treatment	٥,
b- Subchronic treatment	٥,
٤,٢,٢ . The effects of acute and subacute administration of	٥,
cadmium chloride and lead acetate on the ratio of	
PCEs/NCEs in bone marrow cells of mice	٥,
٤,٢,٢,١. Cadmium chloride	٥,
a- Acute treatment	01
b- Subchronic treatment	01
٤,٢,٢,٢. lead acetate	01
a-Acute treatment	01
b- Subchronic treatment	٥٨
۶٫۳.RFLP/PCR assay	
CHAPTER V. Discussion	٦٨
۰٫۱. Micronucleus test as a cytogenetic biomarker	٦٨
۰٫۲. RFLP/PCR as a molecular biomarker	٧١
Summary	٧٤
References	YY
Arabic Summary	
Arabic Abstract	

LIST OF TABLES

Table No.		Page
•	The effects of acute and subacute administration of cadmium chloride and lead acetate on the frequency of Micronucleated polychromatic erythrocytes (MNPCEs) in bone marrow cells of	0 {
۲	mice. The effects of acute and subacute administration	٥٦
	of cadmium chloride and lead acetate on the ratio of PCEs/NCEs in bone marrow cells of mice.	

List of Figures

Fig. No.	Determination of i.p MTD of cadmium chloride in male	Page
,	mice	• ,
4	Determination of i.p MTD of lead acetate in male mice	٤٨
٣	Bone marrow smear of mouse showing micronucleated polychromatic erythrocyte (MNPCE)	٥٣
ŧ	Fold-change from negative control of micronucleated polychromatic erythrocytes (MNPECs) in the different experimental groups	00
٥	Fold-change from negative control of polychromatic erythrocytes (PCEs) per ' · · · erythrocytes in the different experimental groups	٥٧
7	Agarose gel electrophoresis of PCR products of MT-1 gene of mice treated with cadmium chloride (A) or lead acetate (B)and digested with Bgl II M: marker ØX 142 RF DNA Hae III Lane 1: untreated and undigested liver DNA(-ve control), lane 1: untreated and digested liver DNA, lanes 1, 1; single i.p. injection with 1,0 mg/kg b.w. cadmium chloride or 1,1,0 mg/kg b.w. lead acetate, lanes 2,4,11: multiple i.p. injections with 1,10 mg/kg b.w. cadmium chloride or 1,1,0 mg/kg b.w. lead acetate ,lanes 2,4,11: multiple i.p. injections with 1,10 mg/kg b.w. cadmium chloride or 1,1,0 mg/kg b.w. lead acetate	٦.
v	Agarose gel electrophoresis of PCR products of MT-1 gene of mice treated with cadmium chloride (A) or lead acetate (B) and digested with Bcl I. M: marker ØX 145 RF DNA Hae III Lane 1: untreated and undigested liver DNA(-ve control), lane 1: untreated and digested liver DNA, lanes 1, 1; single i.p. injection with 1,0 mg/kg b.w. cadmium chloride or 1,1 mg/kg b.w. lead acetate, lanes 1,1 mg/kg b.w. cadmium chloride or 1,1 mg/kg b.w. lead acetate planes 1,1 multiple i.p. injections with 1,1 mg/kg b.w. cadmium chloride or 1,2 mg/kg b.w. lead acetate planes 1,2 mg/kg b.w. cadmium chloride or 1,2 mg/kg b.w. lead acetate	71
٨	Agarose gel electrophoresis of PCR products of MT-1 gene	٦٢

74

٦ ٤

70

77

- Agarose gel electrophoresis of PCR products of MT-1 gene of mice treated with cadmium chloride (A) or lead acetate (B) and digested with Ball M: marker ØX 11/2 RF DNA Hae III Lane 1: untreated and undigested liver DNA(-ve control), lane 1: untreated and digested liver DNA, lanes 1: single i.p. injection with 1: mg/kg b.w. cadmium chloride or 1: single i.p. injection with 1: single i.p. injections with 1: mg/kg b.w. lead acetate, lanes 2: 1: multiple i.p. injections with 1: X 1: mg/kg b.w. cadmium chloride or 1: X 1: mg/kg b.w. lead acetate.

- Agarose gel electrophoresis of PCR products of MT-1 gene

Agarose gel electrophoresis of PCR products of MT-1 gene of mice treated with cadmium chloride (A) or lead acetate (B) and digested with EcoRI M: marker ØX 11/2 RF DNA Hae III Lane 1: untreated and undigested liver DNA(-ve control), lane 1: untreated and digested liver DNA, lanes 1, 1; single i.p. injection with 1,0 mg/kg b.w. cadmium chloride or 1,1,0 mg/kg b.w. lead acetate, lanes 1,1,1 multiple i.p. injections with 1,10 mg/kg b.w. cadmium chloride or 1,1,0 mg/kg b.w. lead acetate ,lanes 0,4,11: multiple i.p. injections with 1,10 mg/kg b.w. cadmium chloride or 1,1,0 mg/kg b.w. lead acetate

77

ABSTRACT

The induction of micronuclei in mice bone marrow cells and point mutation at the restriction sites of ^ different restriction enzymes, five cutters(Ball, Bell, Bglll, HindIII and PstI) and three non cutters (BamHI, EcoRI and NcoI) of mice MT-I gene were investigated.

Cadmium chloride was administered to adult male mice as single i.p. dose of Y,o and Y,Yo mg/kg b.w. and as repeated i.p doses of Y,Yo mg/kg b.w. for & week at YYh intervals. Cdclx induced a significant and dose-dependent increase in the percentage of MNPCEs reached Y,AT % with the highest tested dose compared with negative control.

On the other hand administration of lead acetate doses of TYT and YTY, o mg/kg b.w. single i.p injection and A mg/kg b.w. as repeated i.p. doses for 4 week at YTh intervals had induced a significantly higher MN frequency than negative control.

Null point mutation induction was detected using PCR/RFLP method after different treatments with the two tested doses of cadmium chloride or lead acetate.

In conclusion, results of the present work indicated that cadmium chloride and lead acetate induced significant cytogenetic and cytotoxic effects in mice bone marrow cells with no point mutation in MT-I gene at the restriction sites of the restriction enzymes used. Thus it may be concluded that MN assay can serve as a better preliminary biomarker that reflects cadmium and lead exposure.

However, further investigation is needed to evaluate other molecular assays to detect mutations that may be produced by heavy metals.

Chapter I

Introduction and aim of the work

Heavy metals are found in increasingly hazardous concentrations in air, food, and water. Agency for toxic substances and disease registry (ATSDR, 1999) lists cadmium and lead among the top of the 700 most hazardous substances in the environment which have been identified as the most probable causes of heavy metal-related disease observed in primary care medicine.

As a class heavy metals can either be mutagenic by themselves or can enhance the mutagenic effect of other agents (Minissi and Lombi, ۱۹۹۷).

Cadmium is a toxic heavy metal of continuing occupational and environmental concern. Cadmium exposure mainly occurs in industrial settings, however, cigarette smokes and Cd-contaminated water, air and food are other non-occupational sources of human exposure to cadmium. It has wide variety of adverse effects and it has been classified as a human carcinogen by the International Agency for Research on Cancer and the US National Toxicology Program (Rossman et al., 1997 and Who and Lyon, 1997). Moreover, it's clearly a potent multi-tissue animal carcinogen (Schimada et al., 1997; Vikina et al., 1994; Who and Lyon, 1997). The mechanisms of the carcinogenic activity of cadmium are not clearly defined but may involve non-genotoxic or indirect genotoxic events since cadmium is, in general, a weak mutagen (Dzhokhadze and Lezhava, 1992).

Several *in vitro* studies have shown that cadmium produces DNA strand breaks, DNA–protein cross-links and oxidative DNA damage mostly at high cytotoxic concentrations (**Deknudt and Gerber**, 1949; **Forni**, 1997).

However, reports regarding the *in vitro* induction of chromosomal aberrations by cadmium compounds or the data obtained from *in vivo* assays were contradictory.

١