

APPLICATION OF MEMBRANE BIOREACTOR (MBR) FOR WASTEWATER TREATMENT

By

SAYED ISMAIL ALI AHMED

Assistant Lecturer, Public Works Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

Dissertation Submitted to Faculty of Engineering, Ain Shams University for the Degree of Doctor of Philosophy in Civil Engineering (Sanitary and Environmental Engineering).

Joint Supervision

Faculty of Engineering, Ain shams University, Egypt. Van Hall Institute, Wageningen University, The Netherlands.

<u>Supervisors</u>

Prof. Dr. Hamdy I. Aly

Professor of Sanitary and Environmental Engineering, Public Works Department, Faculty of Engineering, Ain shams University, Cairo, Egypt.

Prof. Dr. Mohamed E. A. Elnadi

Professor of Sanitary and Environmental Engineering, Public Works Department, Faculty of Engineering, Ain shams University, Cairo, Egypt.

Prof. Dr. Ir. Sameh K. I. Sayed

Head of Water Pollution Control
Department,
Van Hall Institute, Wageningen
University, Leeuwarden, The Netherlands

Prof. Dr. Tarek I. M. Sabry

Associate Professor of Sanitary and Environmental Engineering, Public Works Department, Faculty of Engineering, Ain shams University, Cairo, Egypt.

2011

APPLICATION OF MEMBRANE BIOREACTOR (MBR) FOR WASTEWATER TREATMENT

Thesis Submitted for the Degree of Doctor of Philosophy in Civil Engineering (Sanitary and Environmental Engineering)

By

SAYED ISMAIL ALI AHMED

Assistant Lecturer, Public Works Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

THESIS APPROVAL

Examiners Committee	<u>Signature</u>
Prof. Dr. MOHAMED SAEED MAHMOUD EL-KHOULY Professor of Sanitary & Environmental Engineering Faculty of Engineering ,Ain Shams University ,Cairo, Egypt	
Prof. Dr. IHAB MOHAMED RASHED. Professor of Sanitary Engineering, Faculty of Engineering, Cairo University, Cairo, Egypt	
Prof. Dr. Ir. SAMEH KHALIL SAYED. Head of water Pollution Control Dept., Van Hall Institute Wageningen University, The Netherlands	
Prof. Dr. MOHAMED EL HOSSEINY EL-NADI. Professor of Sanitary & Environmental Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt	

Date: ----/2011

DEDICATION

This research has taken periods from my life.

I wish to dedicate it with my greatest thanks to my parents, who sacrificed a lot and did their best to help me to succeed in my life and keep praying for me,

Father & Mother

I wish also, to dedicate this thesis to my wife with all the gratitude for her patience and continuous encouragement, support during our residence in the Netherlands and sharing responsibilities with me;

Nariman Yehia

Dedication also, for my kind little daughters;

Nour & Samaa

At the last, I affectionately dedicate this work for my spiritual family of **El-Khaal Abd- Elrahman** and his kind family whom were a sent from **ALLAH**.

STATEMENT

This dissertation is submitted to "Ain Shams University" for the degree of "Doctor of Philosophy in Civil Engineering" (Sanitary and Environmental Engineering.

The work included in this dissertation was carried out during the period from 2006 to 2010 under joint supervision between the Public Works Department, Faculty of Engineering, Ain Shams University in Egypt and the department of Environmental Technology, Van Hall Institute in the Netherlands (Holland).

No part of this dissertation has been submitted for a degree or qualification at any other University or Institution.

Name : Sayed Ismail Ali Ahmed

Signature :

Date :

<u>ACKNOWLEDGMENT</u>

First and for most, I glorify **Allah** the most kind and most merciful for his limitless guidance in performing this study.

The author wishes to express his sincere thanks to **Prof. Dr. Sameh Khalil Ibrahim Sayed**, head of water pollution control department, Van hall Larenstein, Wageningen University, the Netherlands for his constructive supervision and continuous guidance. Appreciation is also due to him for his great efforts generously offered to facilitate the research and laboratory work and his valuable and constructive discussion that have made this work possible in the present form.

The author wishes deeply to express his gratitude to **Prof. Dr. Hamdy Ibrahim Aly,** Professor of Sanitary & Environmental Engineering, Faculty of Engineering, Ain Shams University, for patient guidance, helpful suggestions, great supporting, cooperation and help in the reviewing of the dissertation. Appreciation is also due to him for his great efforts generously offered to overcome any difficulties faced during the research work.

The author wishes deeply to express his gratitude to **Prof.Dr. Mohamed El Hossieny El Nadi,** Professor of Sanitary & Environmental Engineering, Faculty of Engineering, Ain Shams University, for his support, encouragement and cooperation during the preparation of this thesis and also the valuable cooperation and help in the reviewing of the dissertation.

I would also like to thank **Prof.Dr. Tarek Sabry** for his help and voluble cooperation and the great guidance and support during the research.

I would also like to thank **Mr. L. Groendijk** for his cooperation and his fundamental rewarding discussions and for his cooperation to set-up the research pilot unit at the Laboratory of environmental sciences, Van Hall Institute, the Netherlands.

My special appreciation and respect to **Dr. A. Zwijnenburg**, University of Twente, wetsus research center. Appreciation also to **Van Hall** staff members; **Mr. J. Postema, Mr. H. Reenders,** and **Mr. G. Truijen** for their assistance and help during the research work.

Many thanks and appreciation to the Egyptian Ministry of Higher Education and the staff of the Cultural Office in Berlin, Germany for the care and support during my educational mission in the Netherlands.

Finally, my sincere acknowledgment is due the whole staff of Sanitary Engineering Section, Faculty of Engineering, Ain Shams University for their encouragements and support to achieve this study.

THESIS SUMMARY

Thesis titles:

Application of Membrane Bioreactor (MBR) for Wastewater Treatment

Prepared by:

Saved Ismail Ali Ahmed

Summary:

The increasing environmental awareness of the world community to provide proper and efficient engineering solutions to wastewater treatment as part of a global strategy to control the pollution is the motive to carry out researches on enhancement of treatment technologies and improving their performance.

The membrane bioreactors (MBR) technology is among the most recent promising innovations for wastewater treatment which give very high treatment efficiency.

This study was carried out to assess the feasibility of combination between intermittent UASB with submerged membrane bioreactors to develop two stages (UASB/MBR1) for the treatment of domestic wastewater (sewage). Two treatment systems were operated in parallel, two stages (UASB/MBR1) system and single stage (MBR2) system.

The field experimental work was divided into different phases:

First phase: investigation and assessment of the combination between the intermitted UASB under mesophilic (25 °C) conditions and the MBR system in a two stage UASB/MBR1 compared with the single stage MBR2 system.

Second phase: to study the performance of the two stage UASB/MBR1 system with comparison with single stage MBR2 system under high flux rates (40-50 l/m²/hr).

Third phase: to study the performance of the MBRs under moderate flux rates ($20-25 \text{ l/m}^2/\text{hr}$).

Fourth Phase: to study the effect of the shock organic load on the performance of the two stage UASB/MBR system.

The performance of both MBRs systems were evaluated regarding the prolonged steady operation period, the steady operational flux rate the trend for TMP

increase, the chemical cleaning frequency and clean flux recovery after cleaning steps, and also, the treatment efficiency.

The proposed combined UASB/MBR1 system improved the operation performance of MBR1 to achieve maximum water recovery, higher permeate flux accompanied by less biofouling and less need for chemical cleaning of the membranes.

According to the obtained results, the present study resulted in the following conclusions:

- the two stage UASB/MBR1 systems shows a very high removal efficiencies with respect to the biological oxygen demand (BOD5), the total suspended solids (SS), and chemical oxygen demand (COD) rather than single stage MBR2 system, i.e., the average effluent concentration of BOD5 was 4 mg/l with a removal ratio of 98.6 % and the effluent concentration of COD was 46 mg/l with average removal ratio of 90 % and the suspended solids on the effluent were not detective (<2 mg/l), under normal operation conditions.
- The efficiencies achieved by the intermittent UASB during the whole study for COD_{CSF} , COD_{CF} , COD_{DF} , and SS were 61%, 37%, 26%, and 51%, respectively.
- Making use of the produced biogas according to the anaerobic degradation of the wastewater can overcome a high percent of the energy cost required by the MBR system.
- The most appropriate concentration of the mixed liquor suspended solids for the MBR is range from 8 to 12 g/l for good aerobic biodegradability and proper steady operation of the MBR system.
- The steady operation period was in range from 2.75 to 3 times higher with MBR1(two stage UASB/MBR1) rather than single stage MBR2, and hence the cleaning frequency was less leading to increasing the life time for the membranes unit and decreasing the cost for the membranes.
- The cleaning rate is reduced for the two stage UASB/MBR1 system with 65% saving the chemical required and avoiding the bad effect of the used chemicals on the life time of the membrane units.

• The combined UASB/MBR1 system was capable to handle the high organic shock load achieving removal ratio for COD total equal to 92.3% compared with 62.3

Keywords: Sewage, Anaerobic Treatment, Membrane Bioreactor, Flux rate, Hydraulic and chemical cleaning

List of Notations

Alphabetical Symbols:

	ai Symbols:
Symbol	Meaning
CAS	conventional activated sludge
CSF	coarse suspended fraction
CF	colloidal fraction
DF	dissolved fraction
TF	total fraction
COD _{TF}	Biochemical oxygen demand, total fraction
COD _{CSF}	Biochemical oxygen demand, coarse suspended fraction
COD _{CF}	Biochemical oxygen demand, colloidal fraction
COD DF	Biochemical oxygen demand, dissolved fraction
CWF	Clean water flux
CWFi	Initial clean water flux, (L/m²/hr/bar)
CWF _f	Final clean water flux, (L/m²/hr/bar)
DSS	Dry Suspended Solids
EPS	exocellular polymeric substances
FSS	Fixed Suspended Solids
HRT	hydraulic retention time
MBR	Membrane bioreactor
MBR1	The first membrane bioreactor in the two stage UASB/MBR2 treatment
MBR2	The second membrane bioreactor in the single stage treatment
MLSS	mixed liquor suspended solids, (g/L)
MLSS _i	Initial mixed liquor suspended solids, (g/L)
$MLSS_f$	Final mixed liquor suspended solids, (g/L)
MCRT	mean cell residence time
MF	Microfiltration
NaOCl	Sodium hypochlorite
S1	Sampling point number 1 for raw wastewater sample
S2	Sampling point number 2 for UASB effluent sample
S3	Sampling point number 3 for MBR1 permeate
S4	Sampling point number 4 for MBR2 permeate
SEC	size exclusion chromatography
SMP	soluble microbial products
SRT	solid retention time
TMP	transmembrane pressure
UASB	Up-flow anaerobic sludge blanket
UF	ultrafiltration
V	Volume
VFA	volatile fatty acid
VSS	Volatile Suspended Solids
WWTP	wastewater treatment plants

Table of contents

CONTENTS:	Page no.
1. CHAPTER (I): INTRODUCTION	1
1.1. GENERAL	1
1.2. RESEARCH OBJECTIVES	2
1.3. STUDY PROGRAM	3
1.4. THESIS CONTENTS	5
2. CHAPTER (II): LITERATURE REVIEW	6
2.1. INTRODUCTION	6
2.2. MEMBRANE BIOREACTORS	7
2.2.1. Definition of MBRs	7
2.2.2. History of MBR Development	8
2.2.3. Configuration of MBRs	9
2.2.4. Advantage and Disadvantage of MBRs	12
2.2.5. Perspectives of MBR Market	13
2.2.6. Filtration Process in MBRs	13
2.2.6.1. OVERVIEW OF MEMBRANE FILTRATION PROCESS	13
2.2.6.2. MEMBRANE FOULING	15
2.2.6.3. FOULING OF PRESSURE DRIVEN MEMBRANE	15
FILTRATION SYSTEM	13
2. 2.6.4. INTERACTIONS BETWEEN FOULANT AND	17
MEMBRANE	1 /
2.2.6.5. CONCENTRATION POLARIZATION	19
2.2.6.6. FOULING MECHANISM IN MBR	20
2.2.6.7. GENERAL FILTRATION EQUATION	23
2.2.6.8. MBR FOULING CONTROL	24
2.3. ANAEROBIC TREATMENT	32
2.3.1 Anaerobic Pre-treatment of Wastewater.	32
2.3.2. Main Limitations of Anaerobic Systems	34
2.3.3. Advantages of the Combined (anaerobic/aerobic) Systems	38
2.3.4. Main Post-treatment Options Currently in Use	39
2.3.5. Comparison between Various Post-Treatment Options	47
2.3.6. MBR as Post-Treatment Alternative	47
3. CHAPTER (III) MATERIALS AND METHODS	50
3.1. GENRAL	50
3.2. RESEARCH MATERIALS	50
3.2.1. Experimental Setup	50
3.2.1.1 THE TWO STAGE COMBINED UASB/MBR	50
EXPERIMENTAL SETUP	
3.2.1.2. THE SINGLE STAGE MBR EXPERIMENTAL SETUP	55
3.2.2. The Membrane Unit	58
3.2.3. Wastewater and sludge samples	61
3.2.3.1. RAW WASTEWATER	61
3.2.3.2. AEROBIC ACTIVATED SLUDGE	61
3.2.3.3. ANAEROBIC SLUDGE	62
3.2.3.4. The start-up of the UASB reactor	62
3.2.3.5. SAMPLING	63
3.3. RESEARCH METHODOLOGY	64
3.3.1. Measurements	64
3.3.2. Analysis	64

3.3.3. Laboratory Analysis methods	65
3.3.4. Cleaning Regime of the Membranes	70
3.3.5. Clean Water Flux and SEM Pictures	70
4. CHAPTER (IV): FIELD MEASUREMENTS AND RESULTS	71
4.1. INTRODUCTION	71
4.2. START-UP of THE RESEARCH WORK	72
4.2.1 The Initial Conditions	73
4.2.2. WASTEWATER CHARACTERISTICS	73
4.3. CYCLE ONE	74
4.3.1. The Initial Conditions	74
4.3.2. Wastewater Samples Characteristics	75
4.3.3. Reactors performance	79
4.3.3.1. UASB OPERATION	79
4.3.3.2. MBR OPERATION	80
4.4. CYCLE TWO	87
4.4.1. The Initial Conditions	87
4.4.2. Wastewater Samples Characteristics during Cycle 2	88
4.4.3. Reactors performance	92
4.4.3.1. UASB OPERATION	92
4.4.3.2. MBR OPERATION	92
4.5. CYCLE THREE	96
4.5.1. The Initial Conditions	97
4.5.2. Wastewater Samples Characteristics during Cycle 3	99
4.5.3. Reactors performance	104
4.5.3.1. UASB OPERATION	104
4.5.3.2. MBR OPERATION	105
4.6. CYCLE FOUR	110
4.6.1. The Initial Conditions	111
4.6.2. Wastewater Samples Characteristics during Cycle 4	113
4.6.3. Reactors performance	118
4.6.3.1. UASB OPERATION	118
4.6.3.2. MBR OPERATION	119
4.7. CYCLE FIVE SHOCK LOAD	125
4.7.1. The Initial Conditions	125
4.7.2. Wastewater Samples Characteristics during Cycle 5	126
4.7.3. Reactors performance	131
4.7.3.1. UASB OPERATION	131
4.7.3.2. MBR OPERATION	132
5. CHAPTER (V): DISCUSSION	137
5.1. GENRAL	137
5.2. THE COMPINATION BETWEEN THE ANEROBIC TREATMENT AND THE MEMBRANE BIOREACTORS during cycle 1	137
5.2.1 The experimental set-up of the two-stage UASB/MBR1 pilot plant	138
5.2.2 The Evaluation of Using the UASB Reactor as Pre-treatment for MBR1	139
5.2.3 Comparison between MBR operation in Two Stage	
UASB/MBR1 and Single Stage MBR2 (cycle 1)	144
5.2.3.1 VOLUMETRIC LOADING RATES	144
5.2.3.2 THE TMP AND THE FLUX RATES	144
5.2.3.2 THE TIME ARILITY	145

5.2.3.4 OPERATION PERIOD	145
5.2.3.5 MEMBRANE FOULING	146
5.2.3.6 CLEANING PROCEDURE AND FLUX RECOVERY	147
5.2.3.7 COD REMOVAL EFFICIENCY	148
5.2.3.8 TSS REMOVAL EFFICIENCY	151
5.3. THE PERFORMANCE OF THE MEMBRANE BIOREACTOR	150
UNDER HIGH FLUX RATE	152
5.3.1 Flux Rates and TMP values	152
5.3.2 The Permeability	153
5.3.3. Operation Period	153
5.3.4 Cleaning Procedure and Flux Recovery	154
5.3.5 COD Removal Efficiency	155
5.3.6 TSS Removal Efficiency	158
5.3.7 BOD ₅ ²⁰ Removal Efficiency	159
5.4. THE PERFORMANCE OF THE MEMBRANE BIOREACTOR	160
UNDER MODERATE FLUX RATE (cycle 4)	100
5.4.1 Flux Rates and TMP values	160
5.4.2 The Permeability	160
5.4.3. Operation Period	161
5.4.4 Cleaning Procedure and Flux Recovery	161
5.4.5 COD Removal Efficiency	162
5.4.6 TSS Removal Efficiency	164
5.4.7 BOD ₅ ²⁰ Removal Efficiency	165
5.5. THE OUTSTANDING OF COMBINED UASB/MBR AGAINST	166
SHOCK ORGANIC LOAD (cycle 5)	100
5.5.1 Flux Rates and TMP values	166
5.5.2 The Permeability	167
5.5.3 Cleaning Procedure and Flux Recovery	167
5.5.4 COD Removal Efficiency	167
5.5.5 BOD ₅ ²⁰ Removal Efficiency	169
6. Chapter (VI): Conclusion	170
6.1 INTRODUCTION	170
6.2 CONCLUSION	170
6.3 RECOMMENDATIONS	172
6.4 FUTURE WORK	172

List of Figures

Figure no.	Name of figure	Page no
Figure 2.1	Configuration of side-stream and submerged MBRs	10
Figure 2.2	Classification of Membrane and Colloidal/Macromolecular Organic Matter in Ground and Surface Water	14
Figure 2.3	Concentration profile in the concentration polarization boundary layer.	20
Figure 2.4	Schematic drawing of the fouling mechanisms: (A) Complete blocking; (B) Standard blocking; (C) Intermediate blocking; (D) Cake filtration, adapted from Bowen (1995)	21
Figure 2.5	Critical flux as a function of air flow rate, MLVSS=17.15 g/L (Howell et al., 2004)	28
Figure 2.6	Relationship between colloidal particle concentration and critical flux (Fan et al., 2006)	29
Figure 2.7	reaction sequence for the anaerobic process (adapted from <i>J. R. C. Bejarano, 2005</i>)	33
Figure 2.8	Typical configuration of a treatment plant with UASB reactor and polishing ponds (von Sperling & Chernicharo 2005)	40
Figure 2.9	Typical configuration of a treatment plant with UASB reactor and overland flow system (von Sperling & Chernicharo 2005)	41
Figure 2.10	Typical configuration of a treatment plant with UASB reactor and activated sludge system (von Sperling & Chernicharo 2005)	42
Figure 2.11	Typical configuration of a treatment plant with UASB reactor and submerged aerated biofilters (von Sperling & Chernicharo 2005)	43
Figure 2.12	Typical configuration of a treatment plant with UASB reactor and trickling filter (von Sperling & Chernicharo 2005)	44
Figure 2.13	Typical configuration of a treatment plant with UASB reactor and anaerobic filter (von Sperling & Chernicharo 2005)	45
Figure 2.14	Typical configuration of a treatment plant with UASB reactor and DAF (von Sperling & Chernicharo 2005)	46
Figure 2.15	Typical configuration of a treatment plant with UASB reactor and constructed wetland (von Sperling & Chernicharo 2005)	46
Figure 3.1	Experimental Setup - Process scheme diagram of the two stages UASB/MBR1 combined system	52
Figure 3.2	(a) UASB reactor, (b) three phase separator, (c) the upper part of the UASB, (d) the inlet distribution piping for the UASB, and (e) UASB heater	53
Figure 3.3	(a) MBR1 reactor, (b) pressure gage, (c) plan view for MBR1, (d) the permeate pump for MBR1, and (e) relaxation controller	54
Figure 3.4	Experimental Setup - Process scheme diagram of the single stage MBR2 system	57
Figure 3.5	The new Kubota membrane sheet	59
Figure 3.6	The Structure of Kubota Membrane Cartridge	60
Figure 3.7	BOD Oxi-top bottles and incubator	67
Figure 3.8	(a) deferent wastewater samples used for the analysis, (b) the membrane filters used for membrane filter sample	68
Figure 3.9	(a) Lasa 100 measuring spectrophotometer of Dr Lange , and (b) Dr Lange heating device	68
Figure 3.10	Filtration apparatus	69
Figure 3.11	Dr. Lange COD kits	69

Figure 4.1	map for the collection district for the domestic wastewater used in the study	71
Figure 4.2	different wastewater samples used for the analysis; (a) Raw WW,	72
8	(b) UASB _{eff} .,	
	(c) MBR1 permeate, and (d) MBR2 permeate	
Figure 4.3	COD _{total} for wastewater samples	73
Figure 4.4	COD total for different wastewater samples during cycle 1	75
Figure 4.5	COD course suspended fraction for different wastewater samples	76
	during cycle 1	
Figure 4.6	COD colloidal fraction for different wastewater samples during cycle 1	76
Figure 4.7	COD dissolved fraction for different wastewater samples during cycle 1	77
Figure 4.8	SS concentrations for different wastewater samples during cycle 1	77
Figure 4.9	HRT and Q for UASB-feed during cycle 1	79
Figure 4.10	VLR for UASB-feed during cycle 1	80
Figure 4.11	MBR1 & MBR2 during operation of cycle 1	81
Figure 4.12	HRT and Q for MBR1 during cycle 1	81
Figure 4.13	TMP and Flux for MBR1 during cycle 1	82
Figure 4.14	Permeability for MBR1 during cycle 1	82
Figure 4.15	the difference between TMP1 (right) &TMP2 (left) during operation	83
Figure 4.16	HRT and Q for MBR2 during cycle 1	84
Figure 4.17	TMP and Flux for MBR2 during cycle 1	84
Figure 4.18	Permeability for MBR2 during cycle 1	85
Figure 4.19	Initial and Final CWF for both MBR during Cycle 1	86
Figure 4.20	COD total for different wastewater samples during cycle 2	88
Figure 4.21	COD course suspended fraction for different wastewater samples during cycle 2	89
Figure 4.22	COD colloidal fraction for different wastewater samples during cycle 2	89
Figure 4.23	COD dissolved fraction for different wastewater samples during cycle 2	90
Figure 4.24	SS concentrations for different wastewater samples during cycle 2	90
Figure 4.25	VLR for UASB-feed during cycle 2	92
Figure 4.26	and Flux for MBR1 during cycle 2	93
Figure 4.27	Permeability for MBR1 during cycle 2	94
Figure 4.28	TMP and Flux for MBR2 during cycle 2	95
Figure 4.29	Permeability for MBR2 during cycle 2	95
Figure 4.30	Initial and Final CWF for both MBR during Cycle 2	96
Figure 4.31	meters and regulators used for flow control during cycle 3	97
Figure 4.32	COD total for different wastewater samples during cycle 3	99
Figure 4.33	COD course suspended fraction for different wastewater samples during cycle 3	100
Figure 4.34	COD course suspended fraction for different wastewater samples during cycle 3	100
Figure 4.35	COD dissolved fraction for different wastewater samples during	101
Figure 4.36	cycle 3 COD dissolved fraction for different wastewater samples during cycle 3	101
Figure 4.37	SS concentrations for different wastewater samples during cycle 3	102
Figure 4.38	MLSS and MLVSS concentration for MBR1 during cycle 3	103
_		

Figure 4.39	MLSS and MLVSS concentration for MBR2 during cycle 3	104
Figure 4.40	VLR for UASB-feed during cycle 3	105
Figure 4.41	TMP and Flux for MBR1 during cycle 3	106
Figure 4.42	Permeability for MBR1 during cycle 3	106
Figure 4.43	TMP and Flux for MBR2 during cycle 3	107
Figure 4.44	Permeability for MBR2 during cycle 3	108
Figure 4.45	MBR1,(a) after clogging, (b) after hydraulic cleaning, (c) after chemical cleaning at the end of cycle 3	108
Figure 4.46	MBR2 at the end of run 1,(a) after clogging, (b) after hydraulic cleaning, (c) after intermediate chemical cleaning	109
Figure 4.47	MBR2 at the end of cycle 3, (a) after clogging, (b) after hydraulic cleaning, (c) after chemical cleaning	109
Figure 4.48	Initial and final CWF for both MBR during cycle 3	110
Figure 4.49	MBR with two membrane cartridge installed during Cycle 4	110
Figure 4.50	COD total for different wastewater samples during cycle 4	113
Figure 4.51	COD course suspended fraction for different wastewater samples during cycle 4	114
Figure 4.52	COD colloidal fraction for different wastewater samples during cycle 4	114
Figure 4.53	COD dissolved fraction for different wastewater samples during cycle 4	115
Figure 4.54	BOD ₅ ²⁰ for different wastewater samples during cycle 4	115
Figure 4.55	SS concentrations for different wastewater samples during cycle 4	116
Figure 4.56	MLSS and MLVSS concentration for MBR1 during cycle 4	117
Figure 4.57	MLSS and MLVSS concentration for MBR2 during cycle 4	118
Figure 4.58	VLR for UASB-feed during cycle 4	119
Figure 4.59	TMP and Flux for MBR1 during cycle 4	120
Figure 4.60	Permeability for MBR1 during cycle 4	120
Figure 4.61	TMP and Flux for MBR2 during cycle 4	121
Figure 4.62	Permeability for MBR2 during cycle 4	122
Figure 4.63	MBR1,(a) after clogging, (b) after hydraulic cleaning, (c) after chemical cleaning oxalic acid, and (d) after chemical cleaning NaOCl at the end of cycle 4	123
Figure 4.64	MBR2 at the end of cycle 4, (a) after clogging, (b) after hydraulic cleaning, (c) after chemical cleaning	123
Figure 4.65	Initial and final CWF during cycle 4	124
Figure 4.66	COD total for different wastewater samples during cycle 5	126
Figure 4.67	COD course suspended fraction for wastewater samples during cycle 5	127
Figure 4.68	COD colloidal fraction for different wastewater samples during cycle 5	127
Figure 4.69	COD dissolved fraction for different wastewater samples during cycle 5	128
Figure 4.70	BOD ₅ ²⁰ for different wastewater samples during cycle 5	128
Figure 4.71	SS concentrations for different wastewater samples during cycle 5	129
Figure 4.72	MLSS and MLVSS concentration and ratio for MBR1 during cycle 5	130
Figure 4.73	MLSS and MLVSS concentrations and ratio for MBR2 during cycle 5	131
Figure 4.74	VLR for UASB-feed during cycle 5	132
Figure 4.75	TMP and Flux for MBR1 during cycle 5	133