

Faculty of Science

Assessment of the Environmental Radioactivity Impacts and Health Hazards at Wadi Sahu Area, Sinai, Egypt.

A Thesis Submitted For

Partial Fulfillment of the Requirements for the Degree of **Master in Science (biophysics)**

By

Walaa Salah Mohamed Hassan

B.Sc in Biophysics(2001) **Nuclear Materials Authority**

Supervisors

Prof. Dr. Abdel-Sattar M. Sallam,

Prof. Dr of Biophysics, Physics Department. Faculty of Science, Ain Shams University

Ass Prof. Sayed F. Hassan,

Ass Prof. of Nuclear Physics, Nuclear Materials Authority (NMA).

Ass Prof. Abdel Ghany fawy,

Ass Prof. of Radiation Physics, Nuclear Materials Authority (NMA).

> Ain Shams University Faculty of Science (2014)

APPROVAL SHEET

Title of M. Sc. Thesis

Assessment of the Environmental Radioactivity Impacts and Health Hazards at Wadi Sahu Area, Sinai, Egypt.

Name of the candidate

Walaa Salah Mohamed Hassan

Supervisors Committee: (Signature)

Prof. Dr. Abdel-Sattar M. Sallam,Prof. Dr of Biophysics, Physics Department.
Faculty of Science, Ain Shams University.

Ass Prof. Sayed F. Hassan, Ass Prof. of Nuclear Physics, Nuclear Materials Authority (NMA).

Ass Prof. Abdel Ghany fawy, Ass Prof. of Radiation Physics, Nuclear Materials Authority (NMA).

Name : Walaa Salah Mohamed Hassan

Degree : Master

Department: Physics – Biophysics Group

Faculty : Science

University : Ain Shams

Graduation Date: 2001, Ain Shams University

Registration Date: 2008

Date of Award: 2014

ACKNOWLEDGEMENTS

First of all praise be to **Allah** the most gracious and merciful. I admit that **Allah** has the largest favor in successfulness of this work.

I would like to express my deep thanks to **Prof. Dr. Abdel-Sattar M. Sallam,** Prof. of Biophysics, Physics Department, Faculty of science, Ain Shams University, for his guidance, helpful discussions, supervision and continuous support, which was of great value in bringing this thesis to light.

I am deeply grateful to **Ass Prof. Said Fahmy Hassan**, Ass. Prof. of Nuclear Physics, Nuclear Materials Authority (NMA), for his invaluable supervision, great efforts, continuous help during this work.

I wish to express my sincere appreciation and thanks to Ass Prof. Abdel Ghany fawy, Ass Prof. of Radiation Physics, Nuclear Materials Authority (NMA), (may god bless his soul) for his sincere help, advice and supervision.

Deep thanks and sincere gratitude with appreciation to **Dr. Mahmoud Moselhi Mohamed,** lecturer of Geology, Nuclear Materials Authority, for his invaluable help, great efforts and continuous support during this work.

Lastly, I would like to thank my Parents especially my mother (may god bless her soul) and all my family and my husband for supporting me, and all my colleagues, in the radiation protection department and in the medical and radiological research section, Nuclear Materials Authority, for their sincere help and Thanks for all the members of the Laboratory of radiometric measurements, Physics department, nuclear materials authority, Cairo, Egypt. I wish to express my deep thanks to all my professors in Physics department, Faculty of Science, Ain Shams University.

Contents

Title	Page
Acknowledgment	
List of Figures	V
List of Tables	X
List of Abbreviation	xiii
Abstract	XV
Chapter one: Introduction and Literature Review	
1.1 Introduction	1
1.2 Literature Review	3
1.2.1 Etched Track Detectors	4
1.2.2 Radon Exhalation Rate	6
1.2.3 Radiometric measurements in soil using gamma Spectroscopy	8
1.2.4 Radiometric measurement for plants	12
1.2.5 Radon measurement in drinking water	13
1.3 Aim and scope of work	15
Chapter Two: Theoretical Aspects	
2.1 Environmental Radioactivity	16
2.1.1 External Irradiation	16
2.2 Sources of Natural Radiation	17
2.2.1 Cosmic rays	18
2.2.2 Primordial (terrestrial) radionuclides	18
2.2.3 Summary of Pathways of Radionuclides	21
2.2.4 External exposures outdoors	22
2.2.5 External exposures indoors	24
2.3 Internal Irradiation	24
2.3.1 Internal Exposures other Than Radon	27
2.4 Radon Formation and its physical characteristics	29

	Contents
2.4.1 Fate and Transport of Radon	30
2.4.2 Transport throughout Soil	31
2.4.2.1 Emanation of Radon	31
2.4.2.2 Migration of Radon	33
2.4.2.3 Exhalation of Radon	35
2.5 Dangerous Impact of Radon Daughters	38
2.6 Radon Measurement Techniques	38
2.6.1 Grab Sampling Techniques	40
2.6.2 Continuous Monitoring Techniques	40
2.6.3 Integrating Sampling Techniques	40
2.7 Radon Measurement in Air	40
2.7.1 Alpha-particle scintillation counting with ZnS	
(Known as Lucas Cell)	40
2.7.2 Internal ionization chamber counters	41
2.7.3Two-filter methods	41
2.8 Radon Daughter Measurement in Air	42
2.8.1 Active technique	42
2.8.2 Passive Techniques	43
2.9Types of Solid State Nuclear Track Detectors(SSNTDS) 54
2.9.1 CR-39	54
2.9.2 LR-115	54
2.9.3 CN-85	55
2.9.4 MK(Makrofel-E)	55
2.10 Radon in Water	55
2.10.1 Physical Basics	55
2.10.2 Presence and Transportation through Water	57
2.11 Radon Measurement In Water	58
2.11.1 Liquid scintillation counters	58
2.11.2 Gas extraction	58
2.11.3 Direct gamma counting	58
2.12 Measurement of Radionuclides in Plant	59

60

2.13 Radon Measurement In Soil

covering materials (Level index) I-gamma

95

3.4.5 Determination of Radon Concentration Levels in

Well Water

3.4.6 Radiological effects owing to ingestion of dissolved radon in drinking water	100
3.4.7Analysis of Environmental Pollutants by Atomic	101
Absorption Spectrophotometer	101
Chapter Four : Results and Discussion	
4.1 Introduction	102
4.2 Active technique	102
4.2.1 Gamma Survey Measurements	102
4.3 Radon Gas Concentration in Subsurface using Closed	107
Cup Technique	
4.4 Radiation Hazard Indices Factors	110
4.4.1 Radio-elements	110
4.4.2 Specific activity	113
4.4.3 Hazard indices factor	116
- Exposure Rate	118
- Absorbed Dose rate	119
- Radium Equivalent Activity (Raeq)	120
- External hazard Index, (Hex)	121
- Internal hazard Index,(Hin)	122
- Level index I-gamma(Iγ)	124
 Annual Effective DoseEquivalent (AEDE) 	125
- P-Factor	127
- Excess Lifetime Cancer Risk (ELCR)	128
4.5 Radon Exhalation Rate Measurements	129
4.6 Radon Measurements in Ground Water	139
4.7 Radiometric Measurements of Radionuclides in Plant	143
4.7.1 Soil –To-Plant Transfer Factors	144
4.7 Conclusion	146
References	148
Arabic summary	

List of figures

		D
Fig (2.1)	Sources and average distribution of natural background radiation for the world population	Page 17
Fig (2.2)	Uranium-238 Decay Chain	19
Fig (2.3)	A schematic diagram of the uranium series	20
Fig (2.4)	A schematic diagram of the Thorium series	20
Fig (2.5)	A schematic diagram of U-235 radioactive decay series (actinium)	21
Fig (2.6)	Primary Decay Scheme for Radon Gas	29
Fig (2.7)	Schematic Illustration of Radon (222Rn) Recoil Trajectories in and Between Soil Grains 32	32
Fig (2.8)	The Parameters Affecting of The Soil Radon Concentration	35
Fig (2.9)	radon origin and distribution	39
Fig (2.10)	Etched channel profiles and etch pit openings of the etched tracks due to 2380 MeV 84Kr-ions in the crystalline matrix of a Muscovite mica track detector. The profiles are cylindrical with diamond shaped etch pit openings in the crystalline matrix of mica track detector	44

Fig (2.11)	A photomicrograph showing the top view of the etch pits due to energetic 136Xe-ions in a plastic track detector. A three prong event resulted in the interaction of 136Xeions with a gold target is also present in the photograph.	44
Fig (2.12)	Schematic diagram showing the steps of latent track formation on CR-39 detector	46
Fig(2.13)	the ion explosion spike mechanism for track formation in inorganice solids:the original ionization left by the passage of charged particle (a) is unstable and ejected ions in to the solid, creating vacancies and interstitials (b) later, the stressed region relaxes elastically (c) straining the undamaged matrix	50
Fig(2.14)	Track etching geometry in isotropic detector materials, where R- range of the particle ,D-diameter of the etched track, L- length of the etched track andt-etching time	52
Fig (2.15)	shows the tracks under an optical microscope.	53
Fig (3.1)	Location map of the studied area.	69
Fig (3.2)	Geologic map of studied Wadi Sahu, southwestern Sinai, Egypt.	69
Fig (3.3a)	Showing the distribution of samples in station one of Wadi Sahu area (R1).	71

Fig (3.3b)	showing the distribution of samples in station two of Wadi Sahu area (R2).	72
Fig (3.3c)	showing the distribution of samples in station three of wadi sahu area(R3).	72
Fig (3.3d)	showing the distribution of samples in station four of Wadi Sahu area(R4) .	73
Fig (3.4)	shows a photo of the RDS-100 survey meter	74
Fig (3.5)	Radon monitoring devices based on etched track detectors.	76
Fig (3.6)	shows the cups fitted in the hole in the subsurface ground	80
Fig (3.7)	Experimental set-up for the measurement of radon exhalation	81
Fig (3.8)	Sodium iodide detector	84
Fig (3.9)	The relation between time in days and the percentage of accumulation of radon gas.	86
Fig (3.10)	shows a photo for well water in the studied area	96
Fig(3.11)	Schematic view of the experimental set-up	97
Fig (4.1)	the contour map for both radon and gamma rays at Wadi Sahu Area Sinai, Egyptfor the four region respectively	109

Fig (4.2)	Average of Rn-222 gas concentration (kBqm ⁻³) at the four regions beside the total average of all regions of Wadi Sahu, Sinia, Egypt.	110
Fig. (4.3)	Total averages of Radium equivalent (Ra_{eq}) at Wadi Sahu beside the average of R_{eq} at each region, Sinai, Egypt	121
Fig (4.4)	Total averages of External Hazard Index (Hex) at Wadi Sahu beside the average of H _{ex} at each region, Sinai, Egypt	122
Fig (4.5)	Total averages of Internal Hazard Index (H _{in}) at Wadi Sahu beside the average of H _{in} at each region, Sinai, Egypt	123
Fig (4.6)	Total averages of level Index $(I-\gamma)$ at Wadi Sahu beside the average of $(I-\gamma)$ at each region, Sinai, Egypt	125
Fig. (4.7)	Total averages of annual effective dose rate, AED, (mSva ⁻¹) at the studied area	126
Fig (4.8)	The average values of the P-Factor at the studied area	127
Fig (4.9)	total average values of Excess Lifetime Cancer Risk (ELCR) at studied area.	129

Fig (4.10)	Correlation between radon exhalation rate and the uranium concentration for the studied sample in field 1, 2, 3, 4 respectively, the highest concentration coefficient between exhalation rate and U-concentration was recorded for R3	134
Fig (4.11)	Correlation factor between radon exhalation and equivalent radium concentration for the studied samples in field 1, 2, 3, 4 respectively	136
Fig (4.12)	Correlation between uranium concentration and equivalent radium for the studied samples in field 1, 2, 3, 4 respectively	138

List of Tables

	Title	Pages
Table (2.1)	Reference annual intake of air, food, and water	22
Table (2.2)	Public exposure to natural radiation	23
Table (2.3)	Concentrations of uranium-238 and thorium-232 in rocks and soils	27
Table (2.4)	Diffusion Coefficient, D for Radon	34
Table (2.5)	Required data for calculation of Working Level	64
Table (2.6)	conversion of radioelement concentration to specific activity	66
Table (3.1)	gives a brief description of the rock types at the different four regions	70
Table (3.2)	Limits of detectable α -particle energies for some plastic	75
Table (3.3)	Standard /Reference/Major Equipment Used and Date of Calibration	77
Table (3.4)	the optimum etching conditions for CR-39 (SSNTD)	79
Table (3.5)	Energy regions of interest (ROIs) for U, Ra, and K analysis	85

Table (3.6)	Percentage of Accumulation of Free ²²² Rn in Sealed Container	86
Table (3.7)	the effective concentrations of U, Th, Ra standard samples	87
Table (3.8)	shows the scientific and Arabic name for the Plants used from the studied area	90
Table (3.9)	below shows a comparison of various sampling configurations with respect to the expected detection limits	99
Table (4.1)	Show the γ - exposure radiation that measured, in units of $\mu Sv/h$, by (RDS-100) instrument for (R1)	103
Table (4.2)	Show the γ - exposure radiation that measured, in units of $\mu Sv/h$, by(RDS-100) instrument for (R2)	104
Table (4.3)	Show the γ - exposure radiation that measured, in units of $\mu Sv/h$, by(RDS-100) instrument for (R3)	105
Table (4.4)	Show the γ - exposure radiation that measured, in units of $\mu Sv/h$, by(RDS-100) instrument for (R4)	106
Table (4.5)	Radioelements content in the collected soil and rock samples for the four regions of Wadi Sahu area	111