COMPARATIVE STUDY BETWEEN THE PHENYLALANINE LEVEL IN UMBILICAL CORD BLOOD AND IN HEEL PRICK BLOOD OF THE NEWBORN Thesis

Submitted for Fulfillment of Masters Degree in Obstetrics and Gynecology

By

Omayma Abd El Kader Hashem Morsy

(M.B.B.CH)
Ain Shams University
Resident of Obstetrics and Gynecology
MANSHEAT EL BAKRY HOSPITAL

Under Supervision of

Prof. Dr. Ahmed Lotfy Aboul Nasr

Professor of Obstetrics and Gynecology Faculty of Medicine Cairo University

Dr. Amr Sobhy Goda

Assistant professor of Biochemical Genetics National Research Center

Dr. Waleed Saber Abd El Gaber

Lecturer of Obstetrics and Gynecology Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University 2012

List of Content

	page
Introduction	1
Aim of the work	4
Chapter (1)Phenylketonuria	5
Chapter (2)Screening for phenylketonuria	31
Patients and methods	50
Results	58
Discussion	68
Summary	74
References	77
Arabic summary	

ABSTRACT

Phenylketonuria (PKU) is an autosomal recessive inborn error of phenylalanine (Phe) metabolism resulting from deficiency of phenylalanine hydroxylase (PAH). Most forms of PKU and hyperphenylalaninaemia (HPA) are caused by mutations in the PAH gene on chromosome 12q23.2. Untreated PKU is associated with an abnormal phenotype which includes growth failure, poor skin pigmentation, microcephaly, seizures, global developmental delay and severe intellectual impairment. Neonatal screening for PKU is common throughout the developed world. It represents a model of preventive care in that the screening procedure is simple and intellectual disability is otherwise irreversible. Changes in treatment and care, and in particular the advent of maternal PKU, require regular evaluation of a programme that also impacts on a large healthy population.

Key Words:

- 1- Phenylketonuria
- 2- newborn screening

Acknowledgment

First and fore most thanks to God. The most beneficent and merciful

I would like to express my sincere gratitude and deepest appreciation

Prof. Dr. Ahmed Lotfy Aboul Nasr

Professor of Obstetrics and Gynecology, Cairo University for his generous supervision, valuable advice and great help throughout his work.

I am very much indebted to Dr. Amr Sobhy

Assistant professor of Biochemical Genetics, National Research Center for his meticulous supervision and valuable criticism.

I am very much indebted to Dr. Waleed saber

Lecturer of Obstetrics and Gynecology, Cairo University for his effort throughout this work

I am very much indebted to Dr. Mustafa Mahmud:

Lecturer of Obstetrics and Gynecology, Cairo University for his great help in doing statistical analysis for this work.

With all my love and respect, never to forget to send my deeply heart thanks to my family, who supported and encouraged me through my whole entire life.

The candidate

List of Abbreviations

AAFP	American Academy of Family
	Physicians
AAP	American Academy of Pediatrics
BH ₄	Tetrahydrobiopterin
CS	caesarian section
CVD	Cardiovascular diseases
HPA	Hyperphenylalaninaemia
HPLC ESI-MS	High performance Liquid
	Chromatography- electrospray tandem
	mass spectrometry
HRSA	Health Resources and Services Administration
IEM	inborn errors of metabolism
IQ	Intelligence quotient
LNAA	Large neutral amino acids
mg/dL	milligrams per decilite
MHP	Mild hyperphenylalaninemia
MRI	Magnetic resonance imaging
NBS	Newborn screening
NVD	Normal vaginal delivary
PAH	Phenylalanine hydroxylase
PAH	phenylalanine hydroxylase
Phe	Phenylalanine
PKU	Phenaylketonuria
Trp	Tryptophan
Tyr	Tyrosine
UAE	United Arab Emirates
WA	westaian Australia
WHO	World Health Organization
μmol/L	micromols per liter

<u>List of Figures</u>

Fig. (1):	Phe metabolism in humans.	11
Fig. (2):	Conversion of Phe to Tyr is via a pathway	12
_	involving the para-hydroxylation of the	
	benzene by PAH, the cofactor BH ₄ and mole	
	cular oxygen	
Fig. (3):	The domain structure of PAH.	13
Fig. (4):	Structural components of PAH.	15
Fig. (5):	The basic structure of the human <i>PAH</i> gene.	19
Fig. (6):	Card used to record cases in the study.	52
_		
Fig. (7):	Comparison between normal vaginal	63
	delivery (NVD) and cesarean section (CS)	
	cases as regards mean values of	
	phenylalanine of umbilical cord ,heel	
	prick after delivery and heel prick3days	
	after delivery	
Fig. (8):	Mean value of phenylalanine in umbilical	64
	cord samples in all cases.	
Fig. (9):	Mean value of phenylalanine in heel prick	65
	before discharge in all cases.	
Fig. (10):	Mean value of phenylalanine in heel prick	66
	after delivery in all cases.	
Fig. (11):	Mean value of phenylalanine in umbilical	67
	cord, heel prick after delivery and heel	
	prick before discharge in normal vaginal	
	delivery (NVD) and cesarean section (CS)	
	cases.	

List of Tables

Table N.		Page N.
1	Incidence of PKU by population	9
2	Mean values of phenylalanine in umbilical cord, heel prick after delivery and heel-prick before discharge among normal vaginal delivery (NVD) cases	58
3	Mean values of phenylalanine in umbilical cord, heel prick after delivery and 3 days after delivery among cesarean section (CS) cases	58
4	Comparison between normal vaginal delivery (NVD) and cesarean section (CS) cases as regards mean values of phenylalanine of umbilical cord, heel prick after delivery and 3 days after delivery	59
5	Comparison between mean values phenylalanine among umbilical cord and heel prick after delivery in normal vaginal delivery	59
6	Comparison between mean values phenylalanine among umbilical cord and heel prick after delivery in cesarean section	60

7	Comparison between mean values phenylalanine among umbilical cord and heel prick before discharge among normal vaginal delivery cases	62
8	Comparison between mean values of phenylalanine in umbilical cord and heel Pr 3rd day after delivery among C.S cases.	61
9	Comparison between mean values of phenylalanine in heel prick after delivery and heel prick before discharge among NVD cases	61
10	Comparison between mean values of phenylalanine in heel prick after delivery and heel prick 3rd day after delivery among C.S cases	62
11	Comparison between mean values of phenylalanine in umbilical cord and heel prick after delivery in cesarean section and normal vaginal delivery cases	62

INTRODUCTION

(PKU) and milder Phenylketonuria its variant hyperphenylalaninaemia (HPA) genetic disorders are characterized by a deficiency in PAH an enzyme that is required to metabolize L-Phe to L-Tyrosine (L-Tyr). On the basis of blood Phe concentrations, PAH deficiency can be classified into classic PKU (Phe >1200µmol/L), mild PKU (Phe = 600 -1200µmol/L) and mild HPA, where blood Phe is elevated above upper reference limit, but <600µmol/L. The decreased PAH activity found in most forms of PKU and HPA are caused by mutations in the *PAH* gene, resulting in a non-functional PAH enzyme (*Hanley*, 2004).

Untreated PKU is associated with an abnormal phenotype including growth failure, microcephaly, seizures and intellectual impairment caused by the accumulation of toxic byproducts of Phe metabolism. The incidence of PKU or HPA is highest amongst Caucasians, occurring in approximately 1 in 10,000 births. PKU can be detected in newborn screening as performed in most Western countries, and early dietary treatment consisting of a low protein diet with Phe restriction can prevent the development of metabolic and pathological sequelae, including intellectual impairment (*Hanley*, 2004).

Avoidance of brain damage and mental retardation can be prevented if the diagnosis is made early (*Matalon*, 1991).

PKU is inherited in a simple Mendelian 'autosomal recessive' fashion. PKU disease can take place only if both parents are carriers (PKU carriers have only one defected PKU gene and one sound gene), and if both parents pass the defected PKU gene to their baby. The proportion of two carrier parents having a baby with PKU disease is 1:4 (*Weatherall*, 1991).

In 1934 Følling discovered PKU disease in Norway however tests for PKU were available only in 1960 after Robert Guthrie developed a PKU screening test called the Guthrie inhibition test. Since then the early diagnosis and proper management of the disease has allowed young people to grow up normally and live full productive lives (*Guthrie*, 1963).

Routine screening of newborns for PKU is now mandatory in most countries of the world. The Guthrie blood test is normally done before discharging the newborn from hospital. However, it is important to note that this test is not significant until the newborn has taken an ample amount (for 2 or 3days) of the amino acid phenylalanine, which is a constituent of both human and cow's milk (*Hanley et al*, 1997).

If the PKU test is positive, management and dietary control must start from the first days of life to minimize the possibility of mental retardation and to prevent the accumulation of phenylalanine in them body (*Wappner et al, 1999*).

Substituting normal milk with phenylalanine free milk and added strained foods low in protein to the infant's diet are the most common dietary control. Blood and urine tests for phenylalanine are considered the most important dietary monitoring and follow-up tool (*Scriver*, 1982).

Guthrie was the first to demonstrate that blood could be taken from a newborn, absorbed and dried onto standardized filter paper, transported to a testing laboratory and then analyzed for biochemical indicators indicative of congenital disorders, his work on testing for phenylketonuria (PKU) in this way marked the beginning of newborn screening (NBS), in the ensuing four decades, NBS has become a vital public health program preventing debilitating health consequences and providing exceptional health benefits to families and society (*Therrell*, 2006).

AIM OF THE WORK

The objective of the study is to compare between:-

- 1. The level of phenylalanine in the umbilical cord blood and in the heel prick blood immediately after delivery and on the third day after delivery
- 2. The level of phenylalanine in the heel prick blood immediate after delivery and in the heel prick third day after delivery

Chapter (1)

PHENYLKETONURIA

1. History

Phenylketonuria was first described by Asbjorn Følling one of the first Norwegian physicians to apply chemical methods to the study of medicine In 1934, the mother of two intellectually impaired children approached Følling to ascertain whether the strange musty odour of her children's urine might be related to their intellectual impairment, The urine samples were tested for a number of substances including ketones. When ketones are present, urine usually develops a red-brown color upon the addition of ferric chloride, but in this instance the urine yielded a dark-green color (Følling, 1994). After confirming that the unusual result was not due to any medications and repeating the test every other day for two months, Følling proceeded with a more detailed chemical analysis involving organic extraction and purification of the responsible compound, and determination of its melting point(Følling, 1994). The basic elements were quantitated by combustion, and an empiric formula of benzene ring (C₉H₈O₃₎ derived (Følling, 1994) Mild oxidation of the purified substance produced a compound which smelled of benzoic acid, leading Folling to postulate that the compound was phenylpyruvic acid (Følling, 1994). There was no change in the melting point upon mixing of the unknown compound

with phenylpyruvic acid thus confirming the mystery compound was indeed phenylpyruvic acid (Følling, 1994).

Følling subsequently requested urine samples from 430 intellectually impaired patients from a number of local institutions and observed a similar result upon addition of ferric chloride, in a further eight individuals (*Penrose*, 1937). These eight individuals all presented with a mild complexion (often with eczema), stooping figure with broad shoulders, a spastic gait, and severe intellectual impairment (Følling, 1994). Family studies of the affected individuals led to the suggestion of an inherited recessive autosomal trait. Dr Følling published his findings and suggested the name 'imbecillitas phenylpyruvica' relating the intellectual impairment to the excreted substance. Thereafter renamed 'phenylketonuria' (*Penrose*, 1937).

Our understanding has changed dramatically in the 70 years that have elapsed since the discovery of PKU. Jervis established the metabolic block and enzyme deficiency (*Jervis 1947*), and at about the same time, the link between reduced Phe intake and improved prognosis was shown (*Bickel et al, 1953*). After the birth of his intellectually impaired son and a niece with PKU, the Canadian Pediatrician Robert Guthrie, changed his research interests and developed screening tests for PKU (*Guthrie and Susi , 1963*) In the late 1970s, various groups began investigating the molecular basis of PKU. The most notable recent advance in the study of PKU was the

establishment, in 1996, of the PAH Mutation Analysis Consortium Database (*Hoang et al, 1996*).

The discovery of PKU by Dr Asbjorn Følling was an important milestone in medicine. The PKU model was used to illustrate how metabolic abnormalities could have neurological effects and how treatment could dramatically affect the clinical manifestations of the disorder. The development of Guthrie's screening test, and dietary treatment, led to the prevention of intellectual impairment in affected children throughout the world. Furthermore, the PKU model has since been used as a template to shed light on over 200 other inborn errors of metabolism (*Applegarth*, 2000).

Incidence of PKU

The incidence of PKU in Caucasian populations is between 1 in 10,000 and 1 in 15,000 people. Table 1 shows the variability in incidence in various countries and regions. It has been suggested that the high incidence of PKU in Turkey is due to the high prevalence of consanguinity and the low incidence seen in Finland and Japan is due to a pronounced negative founder effect in Finland and genetic drift in the founding of the Japanese island population (*Guldberg et al, 1995*)