Physics Department Faculty of Science Ain Shams University

Detection of Photoneutrons Induced From Therapeutic Linear Accelerators

A Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in physics

By

Shrouk Farouk Abd El-Hamid

Physics Department

Faculty of Science, Ain Shams University

Egypt

Supervisors

Prof. Dr. Nabil Ali El-FaramawyProfessor of Nuclear and Radiation Physics
Physics Department, Ain Shams University

Prof. Dr. Arafa Ibrahim Abd El-HafezProfessor of Radiation Metalogy
National Institute for Standards

Dr. Nashaat Ahmed DeiabProf.Ass of Medical Physics
National Cancer Institute

Physics Department Faculty of Science Ain Shams University

Detection of Photoneutrons Induced From Therapeutic Linear Accelerators

Thesis

Submitted in partial fulfillment of the Requirements for M. Sc. Degree in physics

By

Shrouk Farouk Abd El-Hamid

Physics Department

Faculty of Science, Ain Shams University

Egypt

Approved by

Prof. Dr. Arafa Ibrahim Abd El-HafezProfessor of Radiation Metalogy
National Institute for Standards

Prof. Dr. Tarek Mohamed El-DesokyProfessor of Radiation Physics
Faculty of Girls, Ain Shams University

Prof.Dr. Azza Abd El-Raouf El-HaggProfessor of Radiation Physics
Faculty of science, Al-Azhar University

CONTENTS		
LIST OF FIGURES	V	
LIST OF TABLES.	xi	
SUMMARY	2	
CHAPTER 1: THEORETICAL BACKGROUND		
1.1. LINEAR ACCELERATORS (LINACS)	5	
1.1.1. Linac Generations.	6	
1.1.2. Component of Modern Linac	7	
1.1.3. Configuration of Modern Linac	7	
1.1.4. Production of Clinical Photon Beams in Radiotherapy Room	8	
1.2. INTERACTIONS OF RADIATION WITH MATTER	9	
1.2.1. Gamma Interaction with Matter	9	
1.2.2. Neutron Interaction with Matter	15	
1.3. CLASSIFICATIONS OF NEUTRON ENERGIES		
1.4. DETECTION OF NUCLEAR RADIATION		
1.4.1. Active Detectors		
1.4.1.1. Ionization chambers		
1.4.1.2. Rem meter	19	
1.4.2. Passive Detector.	19	
1.4.2.1. Thermoluminescence detector (TLD)	19	
a. Theoretical basics of TL	21	
b. Characteristics of Thermoluminescence Dosimeters	24	
c. Sources of errors in thermoluminescence dosimetry		
d. Advantages of TLD		
1.4.2.2. Solid state nuclear track detectors (SSNTD)		
a. Principals of SSNTD's		
b. Track formation mechanism	31	

c. Track Parameters Definitions	31	
d. Bulk etch rate and Track etch rate		
1.5. QUANTITIES USED IN RADIOTHERAPY	33	
a. Absorbed Dose:		
b. Absorbed Dose Rate		
c. Tissue or Organ Average Absorbed Dose	34	
d. Linear Energy Transfer (LET)	34	
e. Lineal Energy	34	
f. Radiation Weighting Factor	34	
g. Equivalent Dose in Organ or Tissue	35	
h. The Total Equivalent Dose	36	
i. Tissue Weighting Factors	36	
j. The Effective Dose, E	37	
1.6. The NEW ICRU QUANTITIES	38	
a. The Ambient Dose Equivalent, H*(d)	38	
b. The Directional Dose Equivalent, H\ (d)	38	
c. The Individual Dose Equivalent, Penetrating HP (d)	38	
d. The Individual Dose Equivalent, Super field HS (d)	39	
CHAPTER 2: LITERATURE SURVEY		
2.1. PHOTONEUTRON DETECTION BY TLD'S	41	
2.2. PHOTONEUTRON DETECTION BY SSNTD'S	46	
2.3. PHOTONEUTRON DETECTION BY OTHER TECHNIQUES.		
CHAPTER 3:EXPERIMENTAL TECHNIQUES		
3.1. THE IRRADIATION SOURCES		
3.1.1. Neutron Source		
3.1.2. Gamma Source	67	

3.1.3. Medical Linear Accelerator	68	
3.2. USED DETECTORS	69	
3.2. 1. Thermoluminescence System	69	
a. Thermoluminescence reader (TLD reader)	69	
b. TLD detectors	70	
c. Annealing oven and tray	70	
3.2.2. Ionization Chamber Technique (PTW-UNIDOS electrometer)	71	
3.2.3. Solid State Nuclear Track Detector (CR-39)	73	
3.3. STEPS OF THE EXPERIMENTAL WORK	74	
3.3.1. Annealing	74	
3.3.2. Individual Sensitivity of the Dosimeters	75	
3.3.3. Gamma Response	76	
3.3.4. Preparation of Boron Disks	77	
3.3.5. A New Dosimeter Arrangement		
3.3.6. Irradiation of the New Dosimeter to Neutron Source		
3.3.7. The Treatment at Radiotherapy Room		
CHAPTER 4: RESULTS AND DISCUSSION		
4.1. GAMMA IRRADIATION	82	
4.1.1. Irradiation without Zero Dose Reading	82	
a. Glow curves	82	
b. Response curves	87	
i. Total area under the whole Curve (100°C -400°C)	88	
ii. Dosimetric region (100°C -250 °C)	89	
iii. Maximum height of dosimetric Peak (215°C)		
4.1.2. With Reading Zero Doses and Subtracting it		
a. Glow curves for TLD-700		
b. Response curves for TLD-700	96	

c. Response curves for TLD-700 -TL _z	97
d. Glow curves for TLD-600	99
e. Response curves for TLD-600	102
f. Response curves for TLD-600 -TL _z	103
g. Glow curves for TLD (600+700)	105
h. Response curves for TLD (600+700)	108
i. Response curves for TLD-600 -TL _z	109
4.2. Neutron Irradiation.	111
4.2.1. Irradiation for TLD-700	111
4.2.2. Irradiation for TLD-600.	117
4.2.3. Subtracting (TLD-600) - (TLD-700)	123
4.2.4. Irradiation for CR-39.	128
a. Fast neutron	128
b. Thermal neutron + Fast neutron (10B)	129
c. Thermal neutron	130
4.3. APPLICATION IN A HOSPITAL	131
CONCLUSIONS	135
FUTURE WORK	
REFERENCES	138
ARABIC SUMMARY	

ACKNOWLEDGEMENT

First, I thank **Allah**, the most **Beneficent**, the most **Merciful**, Who gave me the ability to do this work and I am asking **His** support for further success in my scientific work.

It was honor for me that I could be one of the students of **Prof. Dr. Nabil Ali EL-Farmawy**, Physics Department, Faculty of Science, Ain Shams University and **Prof. Dr. Arafa Ibrahim Abd EL-Hafez**, National Institute of Standards for proposing and planning this investigation and their continuous encouragements, valuable suggestions, capable supervision and reading throughout the manuscript that have rendered the realization of this work to be possible. The valuable discussions and continuous assistance which were so willingly during the course of this work will never be forgotten. Also, Deep thanks for **Assc.Prof. Dr. Nashaat Ahmed diab**, National Institute for Cancer for providing Facilities in hospital and his supervision.

I would like to deep thank my colleagues in Physics Department **Mohammed Adel, Alaa Mohammed** for their help and support.

Deeply thanks for my Dad **Farouk**, my **mom** rahmaha Allah and for my **mother-in-law** for their helpful to me.

Lovely thanks to my husband

Mohamed

And

My sons

Yassin & Hassan

LIST OF FIGURES

Figure No.	Title	Page No.
Figure (1.1)	Design configurations for isocentric medical linacs.	8
Figure (1.2)	Photoelectric process.	10
Figure (1.3)	Compton scattering process.	12
Figure (1.4)	Pair production process.	14
Figure (1.5)	Diagram of an elastic collision between an incident projectile and a stationary target ($v_2 = 0$). The projectile is scattered with angle θ and nucleus with angle φ .	16
Figure (1.6)	The glow curve for LiF.	21
Figure (1.7)	The traffic of the charge carriers in the TL sample at irradiation process.	23
Figure (1.8)	The traffic of the charge carriers in the TL sample at heat process.	24
Figure (1.9)	Schematic of bulk and track etching rate (V _B , V _T).	33
Figure (3.1)	Shows the unit of ²⁴¹ Am-Be neutron radiation facility in National Institute of Standard, Egypt.	67
Figure (3.2)	Shows the National Institute for Standards unit of ¹³⁷ Cs gamma source (Model GB150,).	68
Figure (3.3)	The Elekta Precise 15 MV, medical linear accelerator	69
Figure (3.4)	TLD Reader Harshwa 4500.	70
Figure (3.5)	The oven model NEY Vulcan TM 3-550 manufactured in USA.	71
Figure (3.6)	Shows the PTW-UNIDOS electrometer.	72
Figure (3.7)	Shows the 30013 farmer chamber used for dose measurements in the thereby dose levels.	73
Figure (3.8)	Water bath.	74
Figure (3.9)	Optical Microscope system for reading tracks	74
Figure (3.10)	Represents the percentage standard deviation of the sensitivity factor for all samples.	76
Figure (3.11)	The compressor and boron disks.	77
Figure (3.12)	The new detector arrangement.	78

Figure (3.13)	Distribution of the sample batches inside solid phantom and at the maze.	79
Figure (4.1)	Represents the relation between temperature and the TL reading (glow curve) at different doses from 0.006 mGy to 0.1 mGy (protection level) for TLD (600+700) with readout heating rate 1°C/s.	83
Figure (4.2)	Represents the relation between temperature and the TL reading (glow curves) at different doses from 1 mGy to 13 mGy (Controlled or restricted areas) for TLD (600+700) with readout heating rate1 ^o C/s.	84
Figure (4.3)	Represents the relation between temperature and the TL reading (glow curves) at different doses from 33 mGy to 787 mGy (doses delivered to normal tissue in radiotherapy) for TLD (600+700) with readout heating rate1 ^o C/s.	85
Figure (4.4)	Represents the relation between temperature and the TL reading (glow curves) at different doses from 2Gy to 17Gy which represent the doses delivered to tumors for TLD (600+700) with readout heating rate 1°C/s.	86
Figure (4.5)	Represents the response curve of TLD (600+700) to gamma radiation with readout heating rate 1°C/s. Each reading is represented as the area under the glow curve from (100-400) °C.	88
Figure (4.6)	Represents the response curve of TLD (600+700) to gamma radiation with readout heating rate 1°C/s. Each reading is represented as the area under the glow curve from (100-250) °C.	89
Figure (4.7)	Represents the response curve of TLD (600+700) to gamma radiation with readout heating rate 1°C/s. Each reading is represented as the height of the dosimetric peak P ₅ .	90
Figure (4.8a)	Represents the relation between temperature and the TL reading (glow curves) at different doses from 1 mGy to 57 mGy for TLD-700 with readout heating rate 1 C/s.	93
Figure (4.8b)	Represents the relation between temperature and the TL reading (glow curve) at different doses from 115 mGy to 1500 mGy for TLD-700 with readout heating rate 1°C/s.	94

Figure (4.8c)	Represents the relation between temperature and the TL reading (glow curves) at different doses from 3Gy to 30Gy for TLD-700 with readout heating rate 1°C/s.	95
Figure (4.9)	Represents the response of TLD-700 to gamma source at readout heating rate 1°C/s by three different methods. Considering o curve for area (100-400); ▼ curve for area (100-250); and • curve for P5 height.	96
Figure (4.10)	Represents the response of TLD-700 to gamma source with readout heating rate 1°C/s with subtracting zero dose reading. By three different methods. Considering o for area (100-400); ▼ for area (100-250); and • for P5 height.	97
Figure (4.11a)	Represents the relation between temperature and the TL reading (glow curves) at different doses from 1mGy to 57 mGy for TLD-600 with readout heating rate1 ^o C/s.	99
Figure (4.11b)	Represents the relation between temperature and the TL reading (glow curves) at different doses from 115 mGy to1500 mGy for TLD-600 with readout heating rate1 ^o C/s.	100
Figure (4.11c)	Represents the relation between temperature and the TL reading (glow curves) at different doses from 3Gy to 30Gy for TLD-600 with readout heating rate 1°C/s.	101
Figure (4.12)	Represents the response of TLD-600 to gamma source with readout heating rate 1°C/s. the curve represented by three different methods. Considering o for area (100-400); ▼ for area (100-250); and • for P5 height.	102
Figure (4.13)	Represents the response of TLD-600 to gamma source with readout heating rate 1°C/s by three different methods. Considering o for area (100-400); ▼ for area (100-250); and • for P5 height.	103
Figure (4.14a)	Represents the relation between temperature and the TL reading forming glow curves at different doses from 1mGy to 57 mGy for TLD (600+700) with readout heating rate1°C/s.	105
Figure (4.14b)	Represents the relation between temperature and the TL reading forming glow curves at different doses from 115 mGy to1500 mGy for TLD (600+700) with readout heating rate1°C/s.	106

Figure (4.14c)	Represents the relation between temperature and the TL reading forming glow curves at different doses from 3Gy to30Gy for TLD (600+700) with readout heating rate1°C/s.	107
Figure (4.15)	Represents the response of TLD (600+700) to gamma source with readout heating rate 1°C/s. by three different methods. Considering o for area (100-400); ▼ for area (100-250); and • for P5 height.	108
Figure (4.16)	Represents the response of TLD (600+700) to gamma source with readout heating rate 1°C/s by three different methods. Considering o for area (100-400); ▼ for area (100-250); and • for P5 height.	109
Figure (4.17)	Represents the relation between temperature and the TL reading forming glow curves at different irradiation time from 1 mSv to 151 mSv to neutron source for TLD-700 bare at heating rate1°C/s.	111
Figure (4.18)	Represents the relation between temperature and the TL reading forming glow curves at different irradiation time from 1 mSv to 151 mSv to neutron source for TLD-700 covered with Cd sheet with readout heating rate1°C/s.	112
Figure (4.19)	Represents the response of TLD-700 to neutron at different doses from 1 mSv to 151 mSv with readout heating rate 1°C/s with and without Cd sheet.	113
Figure (4.20)	Represents the relation between temperature and the TL reading forming glow curves at different irradiation time from 1 mSv to 151 mSv to neutron source covered with 8 cm Perspex for TLD-700 with readout heating rate1°C/s.	114
Figure (4.21)	Represents the relation between temperature and the TL reading forming glow curves at different irradiation time from 1 mSv to 151 mSv to neutron source and 8 cm of Perspex for TLD-700 covered with Cd sheet with readout heating rate1 ^o C/s.	115
Figure (4.22)	Represents the response of TLD-700 to neutron at different doses from 1 mSv to 151 mSv with readout heating rate 1 °C/s with and without 8 cm Perspex sheets.	116
Figure (4.23)	Represents the relation between temperature and the TL reading forming glow curves at different irradiation	117

	time from 1 mSv to 151 mSv to neutron source for TLD-600 bare at heating rate1°C/s.	
Figure (4.24)	Represents the relation between temperature and the TL reading forming glow curves at different irradiation time from 1 mSv to 151 mSv to neutron source for TLD-600 covered with Cd sheet at heating rate1 ^o C/s.	118
Figure (4.25)	Represents the response of TLD-600 to neutron at different doses from 1 mSv to 151 mSv with heating rate 1°C/s with and without Cd sheet.	119
Figure (4.26)	Represents the relation between temperature and the TL reading forming glow curves at different irradiation time from 1 mSv to 151 mSv to neutron source and Perspex for TLD-600 at heating rate1 ^o C/s.	120
Figure (4.27)	Represents the relation between temperature and the TL reading forming glow curves at different irradiation time from 1 mSv to 151 mSv to neutron source and Perspex for TLD-600 covered with Cd sheet at heating rate1 ^o C/s.	121
Figure (4.28)	Represents the response of TLD-600 to neutron at different doses from 1 mSv to 151 mSv with heating rate 1 C/s with and without 8 cm Perspex sheets.	122
Figure (4.29)	Represents the relation between temperature and the TL reading forming glow curves at different irradiation time from 1 mSv to 151 mSv to neutron source for TLD (600-700) bare at heating rate 1 C/s.	123
Figure (4.30)	Represents the relation between temperature and the TL reading forming glow curves at different irradiation time from 1 mSv to 151 mSv to neutron source for TLD (600-700) covered with Cd sheet at heating rate1 ^o C/s.	124
Figure (4.31)	Represents the relation between temperature and the TL reading forming glow curves at different irradiation time from 1 mSv to 151 mSv to neutron source and Perspex for TLD (600-700) at heating rate1 ^o C/s.	125
Figure (4.32)	Represents the relation between temperature and the TL reading forming glow curves at different irradiation time from 1 mSv to 151 mSv to neutron source and Perspex for TLD (600-700) covered with Cd sheet at heating rate1 ^o C/s.	126

Figure (4.33)	Represents the relation between temperature and the TL reading forming glow curves at certain irradiation time to neutron source and for TLD (600-700) at heating rate1 ^o C/s.	127
Figure (4.34)	Represents the response of CR-39 to neutron source at different doses from 1 mSv to 17 mSv directly.	128
Figure (4.35)	Represents the response of CR-39 to neutron source at different doses from 1 mSv to 17 mSv covered with ¹⁰ B.	129
Figure (4.36)	Represents the response of CR-39 to neutron source with ¹⁰ B- the response of CR-39 directly to the source.	130
Figure (4.37)	Represents distribution of track density of CR-39 inside solid phantom and the maze of radiotherapy room.	132
Figure (4.38)	Represents dose distribution inside solid phantom and the maze of radiotherapy room.	133