EVALUATING WATER DISTRIBUTION EFFICIENCY OF PIVOT IRRIGATION SYSTEM IN EASTERN NILE DELTA USING REMOTE SENSING IMAGERY

By

ESLAM FARG AHMED FARG

B.Sc. Agric. Sc. (Agricultural Engineering), Cairo University, 2007. M.Sc. Agric. Sc. (Agricultural Engineering), Ain Shams University, 2012

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHISIOLOGY

In
Agricultural Sciences
(Irrigation and Drainage Engineering)

Department of Agricultural Engineering
Faculty of Agriculture
Ain Shams University

Approval Sheet

EVALUATING WATER DISTRIBUTION EFFICIENCY OF PIVOT IRRIGATION SYSTEM IN EASTERN NILE DELTA USING REMOTE SENSING IMAGERY

By

ESLAM FARG AHMED FARG

B.Sc. Agric. Sc. (Agricultural Engineering), Cairo University, 2007. M.Sc. Agric. Sc. (Agricultural Engineering), Ain Shams University, 2012

This thesis for Ph.D. degree has been approved by:

Date of Examination: / / 2016

EVALUATING WATER DISTRIBUTION EFFICIENCY OF PIVOT IRRIGATION SYSTEM IN EASTERN NILE DELTA USING REMOTE SENSING IMAGERY

By

ESLAM FARG AHMED FARG

B.Sc. Agric. Sc. (Agricultural Engineering), Cairo University, 2007. M.Sc. Agric. Sc. (Agricultural Engineering), Ain Shams University, 2012

Under the supervision of:

Dr. Abd El - Ghany Mohamed EL - Gindy

Prof. Emeritus of Agricultural Engineering, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Mohamed Seif El – deen Abd El- Wahed

Assistant prof of Soil Science, Faculty of Agriculture, Ain Shams University.

Dr. Sayed Medany Arafat

Researcher Prof. Emeritus of Plant Nutrition, Agricultural Applications, Soil and Marine Sciences Department, National Authority for Remote Sensing and Space Science.

ABSTRACT

Eslam Farg Ahmed Farg: Evaluating Water Distribution Efficiency of Pivot Irrigation System in Eastern Nile Delta Using Remote Sensing Imagery. Unpublished Ph. D. Thesis, Department of Agricultural engineering, Faculty of Agriculture, Ain Shams University, 2015.

Traditional methods for center pivot evaluation are depending on the water depth distribution along the pivot arm. Estimation and mapping the water depth under pivot irrigation systems using remote sensing data is essential for calculating the coefficient uniformity (CU) of water distribution. This study focuses on estimating and mapping water depth using Landsat OLI 8 satellite data integrated with Heermann and Hein (1968) modified equation for center pivot evaluation.

Reference evapotranspiration (ET_O) estimated using FAO Penman-Monteith and meteorological data collected by agro-meteorological station including (minimum, average, maximum temperature, wind speed, sunshine hours, solar radiation andrelative humidity). Landsat OLI 8 image was geometrically and radiometrically corrected to calculate the vegetation and water indices (NDVI and NDWI) in addition to land surface temperature.

Results showed that the highest values of calculated VI's that return to the high reflection from the plant canopy at the near infrared and high absorption at the red wavelength at middle season growth stage. On the other hand, collected spectral signatures of peanut and maize canopy were similar with slightly difference along the wavelength from 350 nm to 2500 nm of ASD hand held spectroradiometer at similar values of collected water depth. However the differences of peanut and maize canopy reflectance at minimum and maximum collected water depth

location were significantly different especially at near infrared and short wave infrared.

The statistical analysis of the collected values of water depth values and NDVI, NDWI and LST showed that NDVI is highly negative correlated with NDWI, LST and collected water depth values.

Multi linear regression MLR analysis using stepwise selection was applied to develop water depth prediction equations for the different crops using NDVI, NDWI and LST. The results showed R² and adjusted R² 0.93 and 0.88 respectively. Study area or field level verification was applied for estimation equation with correlation 0.93 between the collected water depth and estimated values.

Key words: Evapotranspiration, VI's, NDVI, NDWI, CU, LST, spectral signatures, ASD, MLR.

ACKNOWLEDGEMENT

I thought the time to write this section never would have arrived. Now I've reached the end and it is time to express my deep hearted gratitude to all the people who have encouraged me to finish this work. The fulfillment of this research is due to the cooperation of many people. Therefore, I can only hope that I mention you all and those who I forget at this moment please forgive me and despite this lapse I really do appreciate you all. But above all I owe my deep sense of gratitude to **My Great LORD** for His choicest blessings, mercy, strength that made it possible for me to complete my studies and enabling me to accomplish this great task of thesis work.

I would like to begin by saying how greatly indebted I am to my thesis advisor Prof. A. m. El-Gindy, Prof. M. S. Abd El-wahed and Prof. S. M. Arafat who accepted the challenge to guide me through the development of this thesis and who made it possible for me to complete the thesis. Their cooperation, wise advice, suggestion and guidance through the months have brought me to the point of successfully completion this thesis work. Words really fail to thank you for always being interested and spontaneously taking on the responsibility in the progress of my work. And providing all kind of help and support me for completion of thesis.

It is my profound privilege to acknowledge gratitude to all researchers and colleges in National Authority of Remote Sensing and Space Sciences teaching me RS & GIS, and their encouragement, patience and curiosity gave me the required impetus to complete my research.

I would like to thank those researchers in the field irrigation water management, processes and application of remote sensing in agriculture sector especially in irrigation and crop water requirements from different countries around the world that unselfishly provided their findings, software and publications, thus greatly contributing to my research.

I have no words to express my heartiest thanks and gratitude to my parents, brother wife and my daughter whose affection, sacrifices and blessing have always been the most vital source of inspiration to me.

CONTENTS

LI	ST OF TABLES	I
LI	ST OF FIGURES	III
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	5
	2.1. Water sources and use in Egypt	5
	2.2. Reference evapotranspiration (ET _O)	6
	2.3. Crop evapotranspiration(ET _C)	7
	2.4. Using remote sensing data in water management	8
3.	MATERIALS AND METHODS	25
	3.1. Study Area	25
	3.2. Meteorological data	26
	3.3. Remote sensing data	28
	3.3.1. Satellite data	28
	3.3.2. Ground based remote sensing measurements	29
	3.4. Field data	30
	3.5. The center pivot coefficient of uniformity	32
	3.6. Deriving of vegetation and water stress indices	32
	3.7. The Surface Energy Balance System (SEBS)	33
	3.8. Statistical analysis	39
	3.8.1. One Way ANOVA and Tukey's HSD post	20
	hoc analysis	39
	3.8.1.1. Comparing standard deviations from	
	several populations	39
	3.8.1.2. Multiple comparisons	40

	3.8.1.3. Tukey's Significant Difference	
	Procedure	40
	3.8.2. Multiple Linear Regression analysis using	
	Stepwise selection method	41
	3.8.2.1. Multiple linear regression MLR	41
	3.8.2.2. Stepwise selection method	42
4.	RESULKTS AND DISCUSSION	44
	4.1. Reference evapotranspiration (ETO)	44
	4.2. The center pivot coefficient of uniformity (CU	44
	4.3. Vegetation indices	45
	4.3.1. Multispectral data analysis	45
	4.3.2. Hyper-spectral data analysis	49
	4.4. Stepwise multi-linear regression analysis	56
5.	SUMMARY AND CONCLUSION	63
6.	REFERENCES	
7	ANNEX 1	66
		79
δ.	ARABIC SUMMARY	

LIST OF TABLES

No.		Table	Page
1	the Landsat 8 Satellite Specifications		28
2	the ASD FieldSpec Specifications		30
3	Significance of difference between different collector locations according to Tukey's for blue range		52
4	ignificance of difference between different collector locations according to Tukey's for green range		53
5	Significance of difference between different collector locations according to Tukey's for red range		53
6	Significance of difference between different collector locations according to Tukey's for NIR range		55
7	Significance of difference between different collector locations according to Tukey's for SWIR_1 range		55
8	Significance of difference between different collector locations according to Tukey's for SWIR_2 range		56
9	shows the summery of fit and the F calculated value of ANOVA analysis		59
10	shows the correlation matrix between NDVI, NDWI, L and water depth	ST	60
11	show the prediction equations of water depth		61

LIST OF FIGURES

No.	Fig	Page
1	Location of study area, Satellite image in false color	
	composition	25
2	Salhyia maximum, minimum and average temprature data for	
	2014	26
3	Salhyia relative humidity data for 2014	26
4	Salhyia wind speed data for 2014	27
5	Salhyia sun shine hours data for 2014	27
6	Salyia solar Radiation for 2014	27
7	False Color Composite of the 6th October company fror	
	agriculture projects area	29
8	Map of Distributed acquired samples cover the variation	
	overall the investigated area	31
9	shows the logical chart of the SEBS model	34
10	the main mathematical processes in the core of SEBS model.	35
11	the methodology and data analysis flowchart	43
12	The calculated ETo values of the study area	44
13	the collectors water depth distribution pivot No. 22	45
14	the collectors water depth distribution pivot No. 40	45
15	The NDVI map of the study area	46
16	The LST map of the study area	47
17	The NDWI map of the study area	48
18	Mean hyper-spectral signature of peanut crop pivot No.22.	49
19	Mean hyper-spectral signature of maizecrop pivot No.40	50
20	Mean hyper-spectral signature of lowest and higher collected	
	water depth locations of peanut crop pivot No.22.	51
21	Mean hyper-spectral signature of lowest and higher collected	
	water depth locations of maize crop pivot No.40.	51
22	the results of one-way ANOVA analysis Tukey's HSD test	52

	for blue range	
23	he results of one-way ANOVA analysis Tukey's HSD test for	
	green range	53
24	the results of one-way ANOVA analysis Tukey's HSD test	
	for Near Infrared range	53
25	the results of one-way ANOVA analysis Tukey's HSD test	
	for NIR range	54
26	the results of one-way ANOVA analysis Tukey's HSD test	
	for SWIR_1 range	55
27	the results of one-way ANOVA analysis Tukey's HSD test	
	for SWIR_2 range	56
28	stepwise multi-linear regression analyses to predict the water	
	depth	57
29	residual by predicted water depth plot	57
30	Leverage plots of each parameter effects in the equation	58
31	Cont. Leverage plots of each parameter effects in the equation	59
32	the correlation between NDVI, NDWI, LST and water depth	60
33	the predicted water depth for study area	62

1. INTRODUCTION

One of the most populous countries in Africa is Egypt. More than 90 million inhabitants live near the banks of the Nile and the delta, in an area of about 5 % of Egypt area. In other words approximately only 5.5% of the total land area is used for different land use purposes. Nile River is the main water resources in Egypt in addition to Egypt had low precipitation rate only at the northern. South of Cairo, rainfall averages only around 2 to 5 mm per year. Parallel to the northern shore line the rainfall can be 410 mm, with most of falling in winter starts in October ends at march. Egypt is therefore totally depended on Nile water entering Egypt at the southern border with Sudan (**Droogers et al., 2009**).

According to food and agriculture organization FAO Water Report No. 29, 2005, the main land cover/land use of the Egypt area is desert land. Most of the cultivated land is located close to the banks of the Nile River, its main branches and canals, and in the Nile Delta. Rangeland is restricted to a narrow strip; in addition to along The Mediterranean coast few kilometers had bearing capacity is quite low. There is no forest land. The total cultivated is 3.4 million ha (2002). The River Nile is the main source of water for Egypt, with an annual allocated flow 55.5 km³/yr under the Nile Waters Agreement in1959. Internal renewable surface water resources are estimated as 0.5 km³/yr. the total water withdrawal in 2000 was estimated at 68.3 km³. The water use is as following 59 km³ for agriculture 86%, 5.3 km³ for domestic use 8% and 4.0 km³ for industry 6 %. Apart from that, 4.0 km3 were used for navigation and hydropower. Surface water was the source for 83 % of the irrigated area in 2000, while 11 % (361 176 ha) of the area was irrigated with groundwater in the provinces of Matruh, Sinai and New Valley. The remaining 6 % (217 527 ha) irrigated with mixed sources.

Agricultural water resources are becoming more limited in arid and semi-arid parts of the world due to a combination of natural and anthropogenic factors, including but not limited to rapidly-growing demand from municipal, industrial, and environmental sectors and predicted increase in frequency and severity of droughts under climate change. As a result, the total irrigation and maximized production per unit area of land replaced with deficit irrigation and achieving maximum production per unit of applied water. Deficit irrigation (DI) is defined as deliberate application of water at rates lower than crop's required rate for producing optimum yield (Fereres and Soriano, 2007).

Remote sensing technologies is essentially used for monitoring crop water status, predicting yields (Idso et al., 1978, 1980; Pinter et al., 1983), improving water use efficiency (Evett et al., 2006) and harvesting methods, and precisely managing irrigation (Wanjura et al., 1995). crop canopy temperature and water content can be derived from infrared thermography and thermometry (Shaughnessy et al., 2011).

Evaluating the performance of irrigation system could play an important role in attaining sustainability. The most accurate way of evaluating and monitoring of any activity might require thorough ground survey. Which are most cases is costly and time consuming to be done frequently and even more difficult to cover large areas. In contrary to its requirement lack and unreliability of data is the most common problem on irrigation evaluation and monitoring, which makes use of remote sensing data important (Aman, 2003).

The pivot irrigation system, consider as best irrigation system or agricultural irrigation because of its low labour and maintenance requirements, performance and easy operation. When properly designed and operated, and equipped with high efficiency water applicators, a center pivot system conserves three precious resources water, energy and time.

Irrigation in arid areas plays an essential role in the agricultural productivity, especially. High water use efficiency can be achieved when precisely applied water equal to crop water demand spatially and temporally. In the past few decades, new technologies have played an important role in improving irrigation water allocation. For example, significantly advanced irrigation scheduling were applied in precision agriculture. Satellite sensors, such as MODIS, Landsat, GOES and other remote sensing imagery can be used to estimate crop water use and leaf water content for optimizing water management in irrigated areas as a continuous, automated, and easy-to-use source of information (Fares et al., 2006; Cammalleri and Ciraolo, 2013; Hassan-Esfahaniet al., 2014 and 2015).

SEBAL (Surface Energy Balance Algorithm for Land) is one of the first mathematical procedures that can operationally estimate spatially distributed ET_{act} of different land use types, including bare soils, water bodies, natural vegetation and rain fed / irrigated crops, etc. The SEBAL model solves the energy balance of each pixel. Cloud-free satellite images are needed to be processed for energy balance purposes (**Droogers et al., 2009**).

Crop water stress index (CWSI) varies to characterize plant water stress and schedule irrigations. Usually, this thermal-based stress index has been calculated from near solar noon or after and in cloud free conditions daily or over a short period of time measurements (Shaughnessy et al., 2012).

Biophysical aspects of vegetation canopies as means are quantified using multispectral Vis such as leaf area index and crop cover.