Comparative study between intralesional steroid injection and silicone sheet versus silicone sheet alone in the treatment of pathologic scars

Thesis

Submitted for fulfillment of the Master Degree in Surgery

By **Amir Abdulaziz Mohammed Alshehari**

(M.B., B.Ch.)

Supervisors

Prof. Dr. Maamoun Ismail Maamoun

Professor of General and Plastic Surgery

Faculty of Medicine

Cairo University

Dr. Wessam Samir Wahdan

Lecturer of General and Plastic Surgery

Faculty of Medicine

Cairo University

Faculty of Medicine
Cairo University
2012

ABSTRACT

BACKGROUND: Pathologic scars present a difficult management problem for physician searching for optimal therapeutic approach.

OBJECTIVE: To compare the clinical response of hypertrophic scars after treatment with intralesional steroid injection combined with silicone sheet versus silicone sheet alone.

MATERIALS AND METHODS: The study was a randomized, prospective study. Twenty patients were treated with intralesional injection triamcinolone acetonide by dermo-jet combined with silicone sheet, and ten patients were treated with silicone sheet alone. The response of treatment was evaluated by the Vancouver scar scale (vascularity, pigmentation and thickness) with the improvement of symptoms (pain and /or pruritus) and Ultrasonography to measure scar tissue thickness.

RESULTS: patients who treated with intralesional triamcinolone acetonide combined with silicone sheet showed an improvement regarding symptoms (pain and / or pruritus), also they showed an improvement according to Vancouver scar scale (vascularity, pigmentation and thickness) and Ultrasonographic assessment showed marked decrease in scar thickness, but patients who treated with silicone sheet alone showed an improvement regarding symptoms, Vancouver scar scale and ultrasonographic assessment but less than first group.

CONCLUSION: This study shows that combination therapy with intralesional triamcinolone acetonide injection 40mg/ml with silicone sheet appears to be superior to treatment by silicone sheet alone in the treatment of hypertrophic scars with no significant side effects.

KEYWORDS: Hypertrophic scars, triamcinolone acetonide, silicone sheet

Acknowledgement

Thanks first and last to Allah as we owe him for his great care, support and guidance in every step in our life.

I would like to express my respectful thanks and profound gratitude to **Prof. Dr. Maamoun Ismail Maamoun**, professor of general and plastic surgery, Faculty of Medicine, Cairo University, for his help with choosing the subject, for giving me the honor and great advantage of working under his supervision. His valuable teaching and continuing education to me extend far beyond the limits of this thesis.

A very special and deep thanks to Dr. Wessam Samir Wahdan, lecturer of general and plastic surgery, faculty of Medicine, Cairo University, for his continuous guidance and his professional advices and stimulating suggestions. I wish to thank him for offering much time and effort to complete this work.

I would like also to thank all teaching staff, and my colleagues in the department of surgery for their continuous and endless encouragement and respect.

Lastly, I wish to express my appreciation to all who shared their thoughts and comments with me to get this work done.

Amir Abdulaziz Alshehari

Dedication

To my family, especially my parents, for their encouragement, patience, and assistance over the years. And to my brothers, my sisters, my beloved wife and my daughters.

List of Contents

Acknowledgement	
Dedication	ii
List of tables	iv
List of figures	V
Abbreviation	vii
Introduction and aim of the work	1
Review of literature	
Anatomy of the skin	4
■ Physiology of wound healing	13
Hypertrophic scars and keloid	26
Scar classification and evaluation	34
Management of pathologic scars	45
Patients and methods.	61
Results	68
Discussion.	89
Conclusion.	94
Summary	95
References	97
Arabic summary	113

List of Tables

Table	Title	Page
Number		
1	Differences between hypertrophic and keloid scars	29
2	Biochemical and molecular differences between keloids and	30
	hypertrophic scars	
3	Clinical classification of scars	34
4	Comparison of Scar Assessment Scales	38
5	The Vancouver Scar Scale	39
6	Patient and Observer Scar Assessment Scale	41
7	Manchester Scar Scale	42
8	The Stony Brook Scar Evaluation Scale	44
9	Comparison of the causes and presenting features of	63
	treatment groups	
10	Comparison of past history and duration of the scar of	64
	treatment groups	
11	Comparison of location and size of the scare of treatment	64
	groups	
12	The pain and/or pruritus response.	67
13	Comparison of Clinical Response of group A before and	70
	after treatment	
14	Comparison of the response by Ultrasound in group A	72
	before and after treatment	
15	Comparison of Clinical Response of group B before and	73
13	after treatment	13
16	Comparison of the response by Ultrasound in group B	75
	before and after treatment	

List of Figures

Figure Number	Title	Page
1	The organization of skin, comparing the structures found in thick,	5
	hairless (plantar and palmar) skin within thin, hairy skin.	
2	Layers of epidermis in thick skin	6
3	Dermis	9
4	Vascular supply to the skin	11
5	Relaxed skin tension lines	12
6	phases of cutaneous wound healing: inflammation, proliferation and	13
	maturation.	
7	A cutaneous wound 3 days after injury	15
,	A cutaneous wound 3 days after injury	13
8	A cutaneous wound Five days after injury	17
9	Madajet XL	65
10	Causes of the scar among group A and B.	68
11	The pain and/or pruritus response among group A	69
12	Comparison of Vascularity Response of group A before and after	70
	treatment	
13	Comparison of Pigmentation Response of group A before and after	71
	treatment	
14	Comparison of Thickness Response of group A before and after	71
	treatment	
15	The pain and/or pruritus response among group B	72
16	Comparison of Vascularity Response of group B before and after	74
	treatment	
17	Comparison of Pigmentation Response of group B before and after	74
	treatment	
18	Comparison of Thickness Response of group B before and after	75
	treatment	
19	Photographic evaluation of patient before intralesional injection	76
	triamcinolone and silicone sheet treatment	
20	Ultrasonic evaluation of patient before treatment	76
21	Photographic evaluation of the same patient after intralesional injection	77
	triamcinolone and silicone sheet treatment.	
22		77
22	Ultrasonic evaluation of the same patient after treatment	77

23	Photographic evaluation of patient before intralesional injection	78
	triamcinolone and silicone sheet treatment.	
24	Ultrasonic evaluation of the same patient before treatment	78
25	Photographic evaluation of the same patient before intralesional	79
	injection triamcinolone and silicone sheet treatment	
26	Ultrasonic evaluation of the same patient after treatment	79
27	Photographic evaluation of patient before intralesional injection	80
	triamcinolone and silicone sheet treatment.	
28	Ultrasonic evaluation of the same patient before treatment	80
29	Photographic evaluation of the same patient after intralesional injection	81
	triamcinolone and silicone sheet treatment.	
30	Ultrasonic evaluation of the same patient after treatment	81
31	Photographic evaluation of patient before intralesional injection	82
	triamcinolone and silicone sheet treatment.	
32	Ultrasonic evaluation of the same patient before treatment	82
33	Photographic evaluation of the same patient after intralesional injection	83
	triamcinolone and silicone sheet treatment.	
34	Ultrasonic evaluation of the same patient after treatment	83
35	Photographic evaluation of patient before intralesional injection	84
	triamcinolone and silicone sheet treatment.	
36	Photographic evaluation of the same patient after intralesional injection	84
	triamcinolone and silicone sheet treatment.	
37	Photographic evaluation of patient before intralesional injection	85
	triamcinolone and silicone sheet treatment.	
38	Ultrasonic evaluation of the same patient before treatment	85
39	Photographic evaluation of the same patient after intralesional	86
	injection triamcinolone and silicone sheet treatment.	
40	Ultrasonic evaluation of the same patient after treatment	86
41	Photographic evaluation of patient before silicone sheet treatment.	87
42	Photographic evaluation of the same patient after silicone sheet	87
	treatment.	
43	Photographic evaluation of patient before silicone sheet treatment.	88
44	Photographic evaluation of the same patient after silicone sheet	88
	treatment.	

List of Abbreviations

5-FU 5-Fluorouracil

ATP Adenosine triphosphate

BTXA Botulinum toxin type A

HTS Hypertrophic scars

IFN α-**2b** Interferon alpha-2b

MSS Manchester Scar Scale

Nd:YAG Neodymium-doped yttrium aluminium garnet

NO Nitric oxide

PCNA Proliferating cell nuclear antigen

PDL Pulsed-dye laser

POSAS Patient and Observer Scar Assessment Scale

SBSES The Stony Brook Scar Evaluation Scale

TAC Triamcinolone acetonide

TGF-β1 Transforming growth factor β1

VAS Visual Analog Scale

VSS Vancouver Scar Scale

 α -SMA α-Smooth muscle actin

Introduction

Hypertrophic scars and Keloids that develop as a result of an exaggerated proliferation of dermal fibroblasts after skin injury are characterized by excess accumulation of collagen in the wound. (Singer & Clark, 1999).

Hypertrophic scars and Keloids may lead to significant morbidity as well as pruritus, pain, restriction of motion, or cosmetic disfigurement. (Alster&Tanzi, 2003).

Hypertrophic scars and Keloids mostly affect persons between 10 and 30 years of age, sex distribution is 1:1, and the incidence ranges from 4.5% to 16% of general population. (Shejbal *et al.*, 2004).

Hypertrophic scars usually develop within one to three months after injury, in contrast with keloids that may appear up to 12 months after injury. (Brissett & Sherris, 2001).

Although many articles have been published on the management of keloid and hypertrophic scars, there is no universally accepted treatment protocol. Hypertrophic scars may be more responsive to treatment than keloids, which are often resistant to treatment and have a higher rate of recurrence. Laser surgery, surgical removal, radiotherapy, silicone gel sheeting and other dressings, cryotherapy, interferon, bleomycin, 5 fluorouracil, and intralesional corticosteroids have all been used alone or in various combinations, with variable success. (Koc et al., 2008).

The most commonly used corticosteroid is triamcinolone acetonide (TAC) at a concentration of 10-40mg/ ml, 1ml of which is administered intralesionally. Corticosteroids act by suppressing inflammatory cell migration, and inhibition of fibroblast proliferation at high dose. (shanthi et al.,2008).

Silicone, a soft, semiocclusive scar cover, is composed of cross-linked polydimethylsiloxone polymer that has extensibility similar to that of skin. Since its introduction in 1982, topical silicone gel sheeting and ointment have been used widely to minimize the size, induration, erythema, pruritus, and extensibility of pre-existing hypertrophic scars and to prevent the formation of new ones. (**Zurada** *et al.*, 2006).

Aim of the work

The aim of this work was to compare the efficacy of using intralesionl steroid injection and silicone sheet versus silicone sheet alone in the treatment of pathologic scars.

Review of literature Anatomy

Anatomy of the skin

The skin is the largest organ system of the body. It provides many functions: temperature regulation, immunologic surveillance, sensory perception, serves as a barrier between a person and the environment, and control of insensible fluid loss. The skin consists of two layers the epidermis and dermis, which are derived from surface ectoderm and its underlying mesenchyme. (Moor, 2007).

The epidermis is derived primarily from surface ectoderm. During the first 3 months of development, the epidermis is invaded by cells arising from the neural crest. These cells synthesize melanin pigment, which can be transferred to other cells of the epidermis by way of dendritic processes. After birth, these melanocytes cause pigmentation of the skin. (Salder, 2009).

The dermis develops from mesenchyme, which is derived from the mesoderm underlying the surface ectoderm and contains collagen, elastic fibers, blood vessels, sensory structures, and fibroblasts. During the fourth week of embryologic development, the single cell thick ectoderm and underlying mesoderm begin to proliferate and differentiate. The specialized structures formed by the skin, including teeth, hair, hair follicles, fingernails, toenails, sebaceous glands, sweat glands and mammary glands also begin to appear during this period in development. Teeth, hair, and hair follicles are formed by the epidermis and dermis, while fingernails and toenails are formed by the epidermis alone. Hair follicles, sebaceous glands, sweat glands and mammary glands are considered epidermal glands or epidermal appendages, because they develop as downgrowths or diverticula of the epidermis into the dermis. (Moore et al., 2007).

Review of literature Anatomy

Epidermis

The epidermis consists mainly of a stratified squamous keratinized epithelium, but it also contains three less abundant cell types: Melanocytes, Langerhans cells, and Merkel's cells. The keratinizing epidermal cells are called keratinocytes. It is customary to distinguish between the thick skin found on the palms and soles and the thin skin found elsewhere on the body. The designations "thick" and "thin" refer to the thickness of the epidermal layer, which varies between 75 and 150µm for thin skin and 400 and 600µm for thick skin. Total skin thickness (epidermis plus dermis) also varies according to site. For example, skin on the back is about 4 mm thick, whereas that of the scalp is about 1.5 mm thick (Fig.1). (Junqueira & Carneiro, 2005).

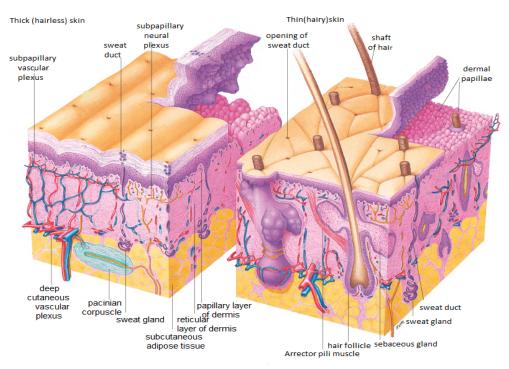


Fig.(1) The organization of skin, comparing the structures found in thick, hairless (plantar and palmar) skin with thin, hairy skin. (**Standring** *et al*, **2005**).

Review of literature Anatomy

From the dermis outward, the epidermis consists of four layers of keratinocytes, five layers in thick skin (fig.2): The basal layer (stratum basale) is a single layer of basophilic columnar or cuboidal cells on the basement membrane at the dermal-epidermal junction. The human epidermis is renewed about every 15–30 days, depending on age, the region of the body, and other factors. (Mescher, 2009).

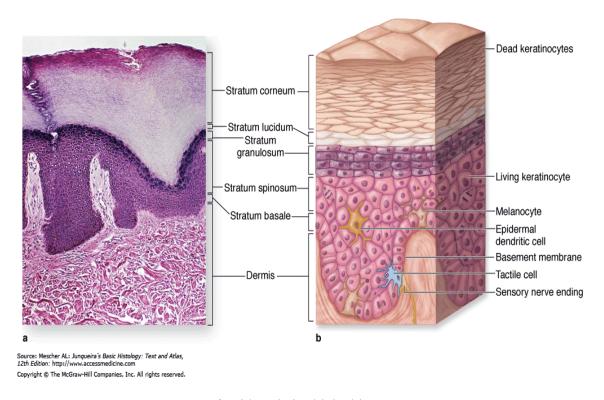


Fig. (2) Layers of epidermis in thick skin. (Mescher, 2009).

The spinous layer (stratum spinosum), normally the thickest epidermal layer consists of polyhedral or slightly flattened cells having central nuclei with nucleoli and cytoplasm actively synthesizing keratin filaments. Just above the basal layer some cells may still divide and this combined zone is sometimes called the stratum germinativum. The epidermis of areas subjected to continuous friction and pressure (such as the soles of the feet) has a thicker stratum spinosum. (Mescher, 2009).