Cairo University
Faculty of Medicine
Urology Department

Patterns of Urolithiasis in Pediatric Patients

Thesis
Submitted for fulfillment for the master degree in urology

Βv

Ayman Maher Abdel Samie Abdel Wahed (M.B. B.Ch.)

Under Supervision of

Prof. Dr. Mohammed Onsi

Professor of Urology Faculty of Medicine Cairo University


Prof. Dr. Amr Fayad

Assistant Professor of Urology
Faculty of Medicine
Cairo University

Dr. Mohammed El Sheemy

Lecturer of Urology
Faculty of Medicine
Cairo University
2012

بسم الله الرحمن الرحيم "وَمَا أُودِيتُم مِّن الْعِلْمِ إِلَّا فَلِيلًا"

صدق الله العظيم

(سورة الإسراء: 85)

Acknowledgement

Thanks to **ALLAH** the greatest of all for helping me to complete this work.

I would like to express my sincere and deep gratitude to **Prof. Dr. Mohammed Onsi,** Professor of urology, Faculty of Medicine,

Cairo University, for giving me the privilege of supervising this thesis

and for his constructive encouragement, illuminating guidance as

well as his support throughout this work.

I am really grateful to **Prof. Dr. Amr Fayad**, assistant professor of urology, Faculty of Medicine, Cairo University, for his assistance.

I really wish to express my deep gratitude to **Dr. Mohammed El Sheemy,** Lecturer of urology, Faculty of Medicine, Cairo

University, for his kind assistance, precious and effective effort.

Contents

Item	Page
List of figures	II
List of tables	v
List of abbreviations	VIII
Abstract	х
Introduction	1
Aim of study	3
Review of literature	4
Subjects and methods	43
Results	47
Discussion	83
Summary and conclusions	93
References	94
Arabic summary	

List of Figures

Figures	Th am	Page
No.	Item	No.
Fig. (1)	Sixteenth century itinerant barber-surgeons.	5
Fig. (2)	Effects of dietary protein.	16
Fig. (3)	Effects of salt on urinary constituents.	17
Fig. (4)	Calcium stones.	32
Fig. (5)	Magnesium ammonium phosphate stones	33
Fig. (6)	Uric acid stones	34
Fig. (7)	Cystine stones	35
Fig. (8)	Sex distribution of the studied cases.	48
Fig. (9)	Mean age of males and females.	48
Fig. (10)	Frequency distribution of cases according to family history of stone formers	49
Fig. (11)	Clinical Features of Studied Children	50
Fig. (12)	Urinalysis of the studied cases.	54
Fig. (13)	Prevalence of UTI among the studied cases.	54

Figures		Page
No.	Item	No.
Fig. (14)	Data on 24-Hour and Random Urine Studies in Studied Children.	56
Fig. (15)	KUB with bilateral opaque stones	57
Fig. (16)	KUB for patient with radio lucent renal stones	57
Fig. (17)	Radiologic findings among cases.	58
Fig. (18)	Frequency distribution of cases according number of the stones.	59
Fig. (19)	Different sites of stones	59
Fig. (20)	Frequency distribution of cases according to Laterality and Multiplicity of the stones.	61
Fig. (21)	KUB showing bilateral renal radio opaque shadows.	61
Fig. (22)	Correlation between stone size and patients' age (done by Pearson correlation test).	62
Fig. (23)	Prevalence of different stone types.	63
Fig. (24)	US for hydronephrotic kidney	68
Fig. (25)	Prevalence of hydronephrosis among the studied cases.	68
Fig. (26)	Prevalence of anatomical urinary tract abnormalities among the studied cases.	69
Fig. (27)	Showing congenital anomalies	70

Figures No.	Item	Page No.
Fig. (28)	Treatment	73
Fig. (29)	Frequency distribution of cases according to etiology.	73

List of Tables

Tables No.	Item	Page No.
Tab. (1)	Mean age of children according to age groups	47
Tab. (2)	Mean age of children according to sex groups	47
Tab. (3)	Anthropometric data of the studied cases	49
Tab. (4)	Clinical Features of Urinary Calculi in Studied Children	51
Tab. (5)	Biochemical profile of the studied cases	52
Tab. (6)	Data on blood analysis Studies in Studied Children	53
Tab. (7)	Urinary findings of the studied cases	53
Tab. (8)	Laboratory values for urinary parameters in our cases	55
Tab.(9)	laboratory values for patients with abnormal urinary parameters	56
Tab.(10)	Frequency distribution of cases according number of the stones	58
Tab.(11)	Distribution of stones in relation to its site	60
Tab.(12)	Frequency distribution of cases according to Laterality and Multiplicity of the stones	60
Tab.(13)	Frequency distribution of cases according to the stone size	62

Tab.(14)	The stones' type in relation to patients' age and sex	63
Tab.(15)	Comparison of the type of the stone in relation to UTI	64
Tab.(16)	Comparison of the type of the stone in relation to its site	65
Tab.(17)	Mean size of the stones according to its type	65
Tab.(18)	Stone type in relation to urinary parameters	66
Tab.(19)	Stone type in relation to serum parameters	76
Tab.(20)	Prevalence of hydronephrosis according to laterality	68
Tab.(21)	Prevalence of anatomical urinary tract abnormalities among the studied cases	69
Tab.(22)	Stone type in relation to cause of stone formation	71
Tab.(23)	Modalities of intervention among cases	72
Tab.(24)	Mean stone size according to its etiology	74
Tab.(25)	Demographics of Patients with Positive FH of Calculus versus those with Negative FH	75
Tab.(26)	Comparison of urinary findings between Patients with a Positive FH of Calculus versus Those with a Negative FH	75
Tab.(27)	Comparison of stone number between Patients with a Positive FH of Calculus versus Those with a Negative FH	76

Tab.(28)	Comparison of stone size between Patients with a Positive FH of Calculus versus Those with a Negative FH	76
Tab.(29)	Comparison of stone parameters between Patients with a Positive Family History of Calculus versus Those with a Negative Family History	77
Tab.(30)	Comparison of Etiologic classification between Patients with a Positive Family History of Calculus versus Those with a Negative Family History*:	77
Tab.(31)	Demographics of Patients of group 1 & 2	78
Tab.(32)	Comparison of urinary parameters between Patients of group 1 & 2	78
Tab.(33)	Comparison of stone number between Patients of group 1 & 2	79
Tab.(34)	Comparison of mean stone size between Patients of group 1 & 2	79
Tab.(35)	Comparison of stone parameters between Patients of group 1 & 2	80
Tab.(36)	Comparison of Etiologic classification between Patients of group 1 & 2	80
Tab.(37)	Comparison of serum parameters in age groups	81
Tab.(38)	Comparison of urinary parameters in age groups	82

List of Abbreviations

AH	:	Absorptive hypercalciuria
AUA	:	American urologic association
BMI	:	Body Mass Index
CaOx	:	Calcium Oxalate
CT	:	Computed Tomography
DMSA	:	Dimercaptosuccinic Acid
ESWL	:	Extracorporeal Shock Wave
		Lithotripsy
HASTE	:	Half Fourier Acquisition Single Shot
		Turbo Spin Echo
HM-1	:	Human Model 1
HPF	:	High Power Field
HU	:	Hounsfield Unit
IVP	:	Intravenous Pyelogram
IVU	:	Intravenous Urography
KUB	:	Kidneys, Ureters and Bladder X-ray
MAP	:	Magnesium Ammonium Phosphate
MET	:	Medical Expulsive Therapy
MIP	:	Maximum Intensity Projection

MRI	: Magnetic Resonance Imaging
NCCT	: Non-Contrast-Enhanced Computed Tomography
PCNL	: Percutaneous Nephrolithotomy
RARE	: Rapid Acquisition With Relaxation Enhancement
SD	: Standard Deviation
UPJ	: Ureteropelvic Junction
URS	: Ureteroscopy
US	: Ultrasound
UTI	: Urinary Tract Infection

Abstract

Introduction and objectives: The aim of our study was to evaluate the clinical features and to assess possible underlying aetiologic factors of pediatric urolithiasis whether metabolic, infection or structural abnormalities, with detection of any role of family history on the cause of stone development.

Material and methods: The study design is a prospective study that was carried out on a total number of 66 consecutive Egyptian children diagnosed with urinary stone disease. The study was done at the department of urology at Aboul-Riche Children's Hospital, Kasr Al-Ainy, Cairo University during the period of the study from March 2011 to April 2012.□

Results: The children were between 18 months to 14 years (mean, 5.864 ± 3.441 years, median 5.0 years). In 85% of the cases, the calculus was located in the upper urinary tract and in 15% it was only in the bladder. The most common presentations were dysurea, abdominal pain, and anuria. A positive family history of urinary calculi was detected in 42.4%; urinary tract infection, in 50%; and anatomic abnormality, in 9% of the patients. Metabolic evaluation revealed that 52.6% of them had a metabolic risk factor including hypercalciuria (7.5%), hyperuricosuria (4.5%) and hypomagnesuria (1.5%).

Conclusions: We think that urolithiasis remains a serious problem in children in our country. Family history of urolithiasis, urologic abnormalities, metabolic disorders and urinary tract infections tend to be associated with childhood urolithiasis.

(**Key Words**): Urolithiasis, Pediatric, Renal stone

Introduction and Aim of the Work

Introduction

The prevalence of pediatric urolithiasis appears to be increasing. Unlike adult patients, rigorous epidemiologic studies do not exist in pediatric populations. Thus, in the setting of an increasing prevalence of childhood stone disease, improved research is critical to the development of uniform strategies for pediatric urolithiasis management. (*Clayton et al.*, 2011).

The patients and their family histories, as well as physical examination, are important initial steps for diagnostic evaluation. Since metabolic causes are frequent in children, diagnostic evaluation should be meticulous so that metabolic disorders that cause recurrent urolithiasis or even renal failure, such as the primary hyperoxalurias and others, can be ruled out. The stone is not the disease itself; it is only one serious sign! Therefore, thorough and early diagnostic examination is mandatory for every infant and child with the first stone event, or with nephrocalcinosis. (*Hoppe et al., 2010*).

Most children with urinary lithiasis have underlying metabolic abnormalities, with hypercalciuria being the most prevalent. Other metabolic risk factors vary in frequency according to the different series. Some other metabolic alterations that have been described are hypocitraturia, hyperuricosuria, hyperoxaluria, renal tubular acidosis and cystinuria (*Peres et al., 2011*).

The goals of the metabolic evaluation for urolithiasis are to identify children at increased risk for recurrent stone disease and to diagnose specific treatable metabolic derangements. If stones have been surgically removed or isolated from strained urine during spontaneous passage,