

"DETECTION, HARACTERIZATION, AND INACTIVATION OF QUORUM SENSING SYSTEM IN SOME GRAM-NEGATIVE BACTERIA"

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

MASTER DEGREE

IN

PHARMACEUTICAL SCIENCES
(MICROBIOLOGY & IMMUNOLOGY)

BY

SARRA EBRAHIM SALEH MOHAMMED

BACHELOR OF PHARMACEUTICAL SCIENCES, FACULTY OF PHARMACY, AIN SHAMS UNIVERSITY, 2001

"DETECTION, CHARACTERIZATION, AND INACTIVATION OF QUORUM SENSING SYSTEM IN SOME GRAM-NEGATIVE BACTERIA"

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

MASTER DEGREE

IN

PHARMACEUTICAL SCIENCES
(MICROBIOLOGY & IMMUNOLOGY)

BY

SARRA EBRAHIM SALEH MOHAMMED

BACHELOR OF PHARMACEUTICAL SCIENCES, FACULTY OF PHARMACY, AIN SHAMS UNIVERSITY, 2001

UNDER SUPERVISION OF

PROF. DR. NADIA A. EL-HALEEM HASSOUNA, PHD

PROFESSOR OF MICROBIOLOGY AND IMMUNOLOGY, FACULTY OF PHARMACY, AIN SHAMS UNIVERSITY.

DR. MOHAMMAD MABROUK ABOULWAFA, PHD

ASSISTANT PROFESSOR OF MICROBIOLOGY AND IMMUNOLOGY ACTING HEAD OF MICROBIOLOGY AND IMMUNOLOGY DEPARTMENT, FACULTY OF PHARMACY, AIN SHAMS UNIVERSITY.

ACKNOWLEDGMENT

First and foremost my thanks must go to ALLAH

اللهم لك الحمد كما ينبغى لجلال وجهك وجهك وعظيم سلطانك

I would like to express my deep gratitude and sincere appreciation to **Prof. Dr. Nadia Abd El-Haleem Hassouna**, Professor of Microbiology and Immunolgy, Faculty of Pharmacy, Ain Shams University, for suggesting this research point as well as for her continuous guidance and conscientious supervision throughout the whole work. The thesis as it stands, would not have been possible without her insistent support and unswerving backing and for that, I shall always be deeply indebted.

Special words of thanks and deep everlasting gratitude are directed to **Dr. Mohammad Mabrouk Aboulwafa**, Assistant Professor and Acting Head of Microbiology and Immunolgy Department, Faculty of Pharmacy, Ain Shams University, for planning the work, scientific supervision, valuable discussions and constructive criticism throughout this study. He saved no effort to supply me with the required

facilities to achieve this work. He also spared me a lot of his valuable time in revising this manuscript.

I am also indebted to **Dr. Mohamed Mostafa Hafez** and **Dr Khaled Abou-Shanab**, Lecturers of Microbiology and Immunolgy, Faculty of Pharmacy, Ain Shams University, for their continuous support and motivation.

I would like to thank with all my heart all **my colleagues** and **all workers** in the Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, for being there whenever I needed help.

Last but not least, I would like to express my deepest and most sincere gratitude to my parents, my husband and my son for their unreserved love, immense patience and encouragement throughout my studies, which have been a source of inspiration and moral support.

Sarra Ebrahim Saleh

List of contents

Title	Page
INTRODUCTION	1
LITERATURE REVIEW	3
1.Quorum sensing—wide spread bacterial communication	3
system	
2. Quorum sensing among Gram-negative bacteria	11
3. Quorum sensing signals	14
3.1. AHL signal	14
3.1.1. Extraction of AHL	15
3.2. Other quorum sensing signal molecules	16
4. Quorum sensing signal turnover	22
5. Detection of AHL	23
5.1. Biological detection	23
5.2. AHL detection by chemical method	26
6.Cell-to-Cell Signaling Systems in Gram-Negative	27
Pathogens	l
7.Cell to cell signaling and Pseudomonas aeruginosa	28
infections	
7.1 Pseudomonas aeruginosa as a human pathogen	28
7.2. Pathogenesis of P. aeruginosa	29
7.2.1.Colonization: The Predominant Role of Cell	29
Associated Virulence Factors	ı
7.2.2. From Colonization to Acute Infection: The Role of	31
Extracellular Virulence Factors	ı
7.3. Cell-to-Cell Signaling: A Global Regulation System of	34
P. aeruginosa Extracellular Virulence Factors	İ
7.3.1. The last cell-to-Cell Signaling System of	34
P. aeruginosa	
7.3.2. The rhl Cell-to-Cell Signaling System of	35
P. aeruginosa	
7.3.3. The Cell-to-Cell Signaling Hierarchy in	37
P. aeruginosa	ı
7.4. Biofilms and Cell-to-Cell Signaling	41
8. Quorum sensing in Pseudomonas fluorescens	42
9. Quorum sensing-a novel target for anti-microbial	43
therapy	ı
9.1. Inactivation by using AHL analogs as antagonists	43
9.2. Inhibition of quorum sensing by Furanone compounds	44

Title	Page
9.3.Inactivation through degradation of quorum sensing signal	45
9.4. Inactivation by interrupting the quorum sensing signal	47
biosynthetic pathway	
9.5. Inactivation by interference with the bacterial membrane	48
multi-drug efflux pump.	
9.6. Inhibition of quorum sensing by Macrolides	48
10. Interference with Cell-to-Cell Signaling: A Potential	49
Therapeutic Approach against P. aeruginosa	
MATERIALS AND METHODS	51
1- Microorganisms	51
1.1. Chromobacterium violaceum CV026	51
1.2. Clinical isolates	51
1.3. Bacillus isolates	52
2. Chemicals	52
3. Instruments and other materials	54
3.1. Microplate reader	54
3.2. Shaking water bath	54
3.3. Shaking incubator	54
3.4. Incubator	54
3.5. Oven	54
3.6. Cooling incubator	54
3.7. Cooling centrifuge	54
3.8. Hettich centrifuge	54
3.9. UV/Visible Spectrophotometer.	54
3.10. Vortex mixer	54
3.11. Balance	54
3.12. Autoclave	54
3.13. Sterile flat-bottom polystyrene tissue culture plates	54
(Nunclon, Denmark)	
4. Media	54
4.1. Ready made media and media ingredients	54
4.2. Slant (50:50) Medium	55
4.3. Luria Bertani (LB) broth	55
4.4. Luria Bertani (LB) agar	56
4.5. Luria Bertani (LB) semisolid agar	56
4.6. Tryptone Yeast (TY) broth	56
4.7. Tween agar	57

Title	Page
4.8. Gelatin agar	57
4.9. Medium for pyocyanin production (King's medium A)	57
4.10.Medium for fluorescein production (King's medium B)	58
5. Reagents, buffers and solutions	58
5.1. Hexanoyl homoserine lactone (HHL) stock solution	58
5.2. Kanamycin sulphate solution	58
5.3. Elastase enzyme stock solution	58
5.4. Acidified ethyl acetate solution	59
5.5. Mercuric chloride solution	59
5.6. Sodium dodecyl sulfate (SDS) 10%	59
5.7. Azocasein solution	59
5.8. Trichloroacetic acid solution	60
5.9. HCl solution (1 M)	60
5.10. NaOH solution (1 M)	60
5.11. Tris-HCl (0.1 M, pH 8)	60
5.12. Bouin's fixative solution	60
5.13. Crystal Violet solution	60
5.14. M63 buffer	60
6. Isolation and categorization of clinical isolates	61
7. Screening the collected Gram-negative isolates for Acyl	61
homoserine lactone (AHL) production	
7.1. Screening by streak plate method	61
7.2. Screening by streaking in parallel	62
7.3. Screening by well diffusion method	63
7.3.1.Sensitivity range of CV026 for available synthetic	63
Acyl Homoserine Lactones	
7.3.2. Preparation of autoinducer extract of the test isolate	64
7.3.3. Well-diffusion method (Ravn et al., 2001)	65
7.3.4. Well diffusion method (Blosser and Gray, 2000)	65
8. Identification of the selected isolates	65
9. AHL broth assay	65
10.Evaluation of some virulence factors produced by the test	68
isolates	
10.1.Production conditions and preparation of supernatants	68
for extracellular virulence factors' assessment	
10.1.1. Evaluation of protease production	68
10.1.2.Evaluation of elastase production in the growth	69
supernatant	
10.1.3. Detection of lipase production	71

Title	Page
10.2 Biofilm assay by spectrophotometric method	72
11. Pigment production	72
12. An attempt for inactivation of AHL signals with some	73
Bacillus isolates	
13. Statistical analysis	74
RESULTS	75
1.Isolation and categorization of clinical isolates	75
2. Sensitivity range of CV026 using available synthetic Acyl	75
Homoserine Lactones	
3. Screening the collected Gram-negative isolates for Acyl	76
homoserine lactone (AHL) production	
3.1 Screening using streak plate method and streaking in	76
parallel technique	
3.2. Screening using well-diffusion methods	76
4.Comparison of quorum sensing signal productivities of the	77
tested Gram-negative isolates	
5. Identification of acyl-HSL producing isolates	80
6. Evaluation of some virulence factors produced by the test	80
isolates	
6.1. Extracellular virulence factors	80
6.1.1. Protease production	80
6.1.2. Elastase production	86
6.1.3.Lipase production	91
6.2. A cell associated virulence factor (Biofilm formation)	95
7. Comparison of acyl-HSL signals and virulence factors of	95
the tested isolates	
8. Pigment production	96
9. An attempt for inactivation of AHL signals using some	103
Bacillus isolates	
DISCUSSION	105
1. Acyl homoserine lactone (AHL) - dependent quorum	106
sensing in Gram-negative bacteria	40.5
2. Screening and bioassay of isolates for AHL production	106
2.1. Utility of C. violaceum mutant CV026 as an AHL sensor	107
2.1.1. Stimulation of violacein synthesis	107
2.1.2. Inhibition of AHL-mediated violacein synthesis	108
2.2. Utility of CV026 as a single biosensor for AHL in	109
comparison to other biosensors	

Title	Page
2.3. Choice of 10 µM Hexanoyl Homoserine Lactone	112
(HHL)as positive control	
2.4. Extraction of the autoinducer produced by the tested	112
isolates	
2.5. AHL broth assay	113
2.6. AHLs produced by the tested Pseudomonas isolates	116
3. The role of quorum sensing in host–pathogen interactions	119
and virulence factors' production	
3.1. Protease and elastase production	121
3.1.1. Correlation between production of AHL and	125
protease production	
3.1.2. Correlation between AHL-production and elastase	126
production	
3.2. Lipase production	128
3.3. Biofilm formation	130
4. Pigment production	133
5. An attempt for inactivation of AHL signals with some	136
Bacillus isolates	
SUMMARY	139
REFERENCES	144
ARABIC SUMMARY	

List of Figures

Figure No	Page
Figure 1:Comparison of acyl homoserine lactone AHL) structures	4
Figure 2:Luminescence (Lux) gene regulation in Vibrio	6
fischeri	
Figure 3: Lux I/Lux R Cell-to-cell signaling systems	10
Figure 4: Other quorum sensing signals (PQS and DKPs)	19
Figure 5:Pseudomonas quinolone signal acts as a link	20
between las and rhl quorum sensing systems	
Figure 6: Canonical quorum-sensing systems	21
Figure 7: Virulence factors of Pseudomonas aeruginosa	30
Figure 8:Model of the different phases of Pseudomonas	31
aeruginosa infection.	
Figure 9: The cell-to-cell signaling circuitry of <i>P</i> .	36
aeruginosa: a global regulatory system of the	
organism virulence factors	
Figure 10: Hierarchical organisation of quorum sensing	39
systems in P aeruginosa.	
Figure 11:Structural comparison of AHL and halogenated	47
furanone	
Figure 12: Screening technique by streak plate method	63
Figure 13:Calibration curve for violacein production by	67
CV026 using synthetic Hexanoyl homoserine lactone	
(HHL)	
Figure 14: Calibration curve of elastase using elastin Congo red as a substrate	71
Figure 15: urple pigment of violacein produced by CV026	78
in response to quorum sensing signal/s produced by a	
tested isolate	
Figure 16: Relative enzyme productivity of protease	83
producing isolates	
Figure 17:Scatter plot of protease productivity of Pseudomonas isolates compared to other Gram-	83
negative isolates	
Figure 18:Growth and enzyme production profiles of	84
protease producing isolates	

Figure No	Page
Figure 19:Flow chart showing distribution of protease	85
production and AHL-production among tested isolates	
Figure 20: Relative intensities of the colour developed by	87
some tested isolates when assayed for elastase	
production	
Figure 21: Relative productivity of elastase enzyme by	87
different tested isolates	
Figure 22: Scatter plot of relative elastase productivity of	88
Pseudomonas isolates compared to other Gram-	
negative isolates	
Figure 23: Growth and enzyme production profiles of elastase	89
producing isolates.	
Figure 24: Flow chart showing distribution of Elastase	90
production and AHL-production among tested isolates.	
Figure 25: Flow chart showing distribution of lipase	92
production and AHL-production among tested isolates	
Figure 26: Scatter plot of relative lipase productivity of	93
Pseudomonas isolates compared to other Gram-	
negative isolates	
Figure 27: Growth and enzyme production profiles of lipase	94
producing isolates	
Figure 28: The formed biofilms stained by crystal violet on a	97
polystyrene microtiter plate.	
Figure 29: Relative biofilm forming capabilities of the tested	97
isolates	
Figure 30: Scatter plot of biofilm formation in <i>Pseudomonas</i>	98
isolates compared to other Gram-negative isolates	0.0
Figure 31: Growth and biofilm formation profiles of the tested	99
isolates	400
Figure 32: Flow chart showing distribution of biofilm	100
formation and AHL-production among tested isolates.	404
Figure 33: The relative productivity of different virulence	101
factors and the quorum sensing signals' concentration	
produced by the acyl HSL producing isolates	404
Figure 34: Screening of different tested Bacillus isolates for	104
their inactivating ability on synthetic HHL	

List of Tables

Table No	Page
Table 1: Summary of AHL-based quorum sensing in Gram-	12
negative bacteria	
Table 2: Functions controlled by quorum sensing circuity in	40
P.aeruginosa	
Table 3: Different chemicals used in the present study	53
arranged alphabetically	
Table 4: Purple zone diameters of violacein pigment	78
produced by CV026 in response to quorum sensing	
signal/s of some Gram-negative isolates.	
Table 5: Relative quorum sensing signal productivities of	79
the tested isolates as determined by AHL broth assay	
Table 6: Relative classification of quorum sensing	79
producing isolates	
Table 7: Preliminary assessment of enzyme productivity of	82
protease producing isolates expressed as clear zone	
diameter of hydrolyzed gelatin.	
Table 8:Pigment production on King's medium	102

INTRODUCTION

Bacteria communicate with one another using chemical signaling molecules as words. Specifically, they release, detect, and respond to the accumulation of these molecules, which are called autoinducers. Detection of autoinducers allows bacteria to distinguish between low and high cell population density, and to control gene expression in response to changes in cell number. This process, termed quorum sensing, allows a population of bacteria to coordinately control the gene expression of the entire community. Quorum sensing confuses the distinction between prokaryotes and eukaryotes because it allows bacteria to behave as multicellular organisms, and to reap benefits that would be unattainable to them as individuals. Many bacterial behaviors are regulated by quorum sensing, including symbiosis, virulence, antibiotic production, and biofilm formation. Recent studies show that highly specific as well as universal quorum sensing languages exist which enable bacteria to communicate within and between species. Finally, both prokaryotic and eukaryotic mechanisms that interfere with bacterial quorum sensing have evolved. Specifically, the secretion of enzymes that destroy the autoinducers, and the production of autoinducer antagonists, are used by competitor bacteria and susceptible eukaryotic hosts to render quorum sensing bacteria mute and deaf, respectively (Schauder and Bassler, 2001).

The present study aimed to investigate quorum sensing phenomenon in some Gram negative clinical isolates. This study is concerned with detection of such phenomenon using an indicator bacteria (a biosensor) and studying some physiological functions of the collected isolates. The inactivation of quorum sensing signals was also attempted.

Aim of the work:

The study was accomplished through the following objectives:

- **1.** Isolation and identification of some Gram negative bacteria from clinical specimens.
- **2.** Detection of bacteria having quorum sensing system among the isolates using a biosensor.
- **3.** Studying some physiological functions and behaviors of isolates that showed quorum sensing mechanisms, such as biofilm formation, enzyme and pigment production.
- **4.** Inactivation of quorum sensing system/s of some selected isolates by other bacterial species was attempted.

LITERATURE REVIEW

1. Quorum sensing-wide spread bacterial communication system

For many years, researchers thought of bacteria as individual cells created to proliferate under various conditions but unable to interact with each other and to collectively respond to environmental stimuli, as it is typical for multicellular organisms. This view began to change few decades ago (Juhas *et al.*, 2005). Advances in the study of bacterial gene expression have discovered that many bacteria employ a dedicated inter-cellular communication system. This bacterial decision-making system enables a given species to sense, integrate and process information from its surroundings, communicate with each other, and monitor its own population density and, as a response, activate or repress specific gene expression. This bacterial cell-density-dependent communication system is known as quorum sensing (Fuqua *et al.*, 1994).

To sense the surrounding bacterial population density, the bacterial quorum sensing system relies on one or more small signal molecules (also called "autoinducers"), which are produced and released by bacteria. In Gram-negative bacteria, the most commonly utilized and intensively investigated autoinducers are N-acyl-homoserine lactones (AHLs) (**Figure 1**). The acyl side-chain length and the substitutions on the side chain provide signal specificity (Eberhard *et al.*, 1981; Fuqua *et al.*, 1996)