Mean platelet volume as a predictor of preeclampsia

Thesis

Submitted for partial fulfillment for the M.Sc. Degree in Obstetrics and Gynecology

Ву

Fathy Shazly Ahmed

M.B.BCh.

Resident of Obstetrics and Gynecology El-Galaa Teaching Hospital

Supervised by

Prof. Dr. Maged Abo Seda

Professor of Obstetrics and Gynecology Ain-Shams University

Dr.Ahmed Abd El-Kader

Lecturer of Obstetrics and Gynecology
Ain-Shams University

Faculty of Medicine
Ain-Shams University
2009

Mean Platelet Volume As A Predictor of Preeclampsia

Protocol for thesis

Submitted for partial fulfillment of master degree in obstetrics and gynecology

By

Fathy Shazly Ahmed

M.B., B. Ch.

Supervised by

Dr. Maged Abo Seda

Professor of obstetrics and gynecology Faculty of medicine Ain Shams University

Dr. Ahmed Abd El-Kader

Lecturer of obstetrics and gynecology Faculty of medicine Ain Shams University

Ain Shams University 2006

قياس حجم الصفائح الدموية للتنبؤ بحالات ما (قبل تسمم الحمل)

رسالة توطئة للحصول على درجة الماجستير في علم التوليد وأمراض النساء

> مقدمه من طبیب / فتحی شاذلی أحمد بکالورپوس الطب والجراحة

تحت اشراف الاستاذ الدكتور/ ماجد أبو سعده

> استاذ علم التوليد وأمراض النساء كلية الطب - جامعة عين شمس

الدكتور/ أحمد عبد القادر فهمى مدرس علم التوليد وأمراض النساء كلية الطب- جامعة عين شمس

جامعة عين شمس كلية الطب-القاهرة ٢٠٠٩

قياس حجم الصفائح الدموية للتنبؤ بحالات ما (قبل تسمم الحمل)

بروتوكول رسالة مقدمه من طبيب / فتحى شاذلى أحمد بكالوريوس الطب والجراحة

توطئة للحصول على درجة الماجستير في علم التوليد وأمراض النساء

تحت اشراف

الاستاذ الدكتور/ماجد أبو سعده

استاذ علم التوليد وأمراض النساء كلية الطب - جامعة عين شمس

الدكتور/ أحمد عبد القادر فهمي

مدرس علم التوليد وأمراض النساء كلية الطب- جامعة عين شمس

> جامعة عين شمس كلية الطب-القاهرة ٢٠٠٦

Abstract

60 women were included into the statistical analysis and 25 (41.6%) of them developed pre-eclampsia during follow-up. Our study revealed an increase in MPV in hypertensive pregnants who developed later pre-eclampsia and the cut-off value of MPV was 9.5 fl and above. However, there was no increase in MPV neither in hypertensive pregnants who did not develop later pre-eclampsia nor in pregnants who were normotensive throughout their gestation and did not develop later pre-eclampsia.

In our study results, the correlation between high MPV and development of pre-eclampsia was highly significant; it showed a high specificity of 84% and a sensitivity of 92% with a p < 0.0001

Keywords:

Mean platelet volume; pre-eclampsia; platelet; gestational age; haemostatic system; pregnancy.

Contents

Contents

Subjects	Page
• Introduction	1
Aim of the Work	5
• Chapter I	
Preeclampsia	6
• Chapter II	
Platelets and its mean volume	41
Patients and methods	63
• Results	70
• Discussion	80
• Conclusion	87
• Summary	88
• References	93
• Arabic Summary	

List of Abbreviations

List of abbreviations

Ob/Gyn.	Obstetrics and Gynecology
ADAMTS13	A disintegrin and metalloproteinase with a
	thrombospondin type 1 motif, member 13.
ADPase	Adenosine diphosphatase
ADP	Adenosine diphosphate
AFI	Amniotic fluid index
Ag II	Angiotensin II
ALT	Alanine transaminase
ANOVA	Analysis of variance
APCR-V	Activated protein C resistance – V
AST	Aspartate transaminase
AT III	Anti-thrombin III
ATP	Adenosine triphosphate
BTG	Beta-thromboglobulin
CAD	Coronary artery disease
CD	Cluster of differentiation
CI	Confidence interval
COX-1	Cyclooxygenase -1
CVA	Cerebrovascular accident
DNA	Deoxyribonucleic acid
EDTA	Ethylene diamine tetraacetic acid
ET	Essential thrombocytopenia
fl	Femtoliter = 10 ⁻¹⁵ Liter

List of Abbreviations

FMV	Flow-mediated vasodilatation
GA	Gestational age
GLM	General linear models
GP	Glycoprotein
	· -
hCG	Human chorionic gonadotropin
H2O2	Hydrogen peroxide
HELLP	Hemolytic anemia, elevated liver enzymes, low
	platelet count
HIT	Heparin-induced thrombocytopenia
HLA-G	Histocompatibility leucocyte antigen-G
hsCRP	High sensitive C-reactive protein
IGF-1	Insulin-like growth factor-1
ILβ	Interleukin β
IL6	Interleukin 6
ITP	Immune thrombocytopenic purpura
IUGR	Intra-uterine growth restriction
LDH	Lactate dehydrogenase
LDL	Low density lipoprotein
LIBS1	Ligand-induced binding site 1
LIGHT	Lymphotoxin-like Inducible protein that competes
	with Glycoprotein D for Herpes virus entry
	mediator on T lymphocytes.
MI	Myocardial infarction
mmHg	Millimiter of mercury
MPV	Mean platelet volume

List of Abbreviations

NHBPEP	National High Blood Pressure Education Program
N	Number
NO	Nitric oxide
NPV	Negative predictive value
NSAID	Non steroidal anti-inflammatory drugs
O2	Oxygene
P	Probability
PAC1	Postsynaptic density and cytoskeleton enriched -1
PAF	Platelet activating factor
PAOD	Peripheral artery occlusive disease
PAR-1	Protease activated receptor type 1
P2Y-1	Purinergic receptor, G-protein coupled 1
PDGF	Platelet derived growth factor
PDW	Platelet volume distribution
PE	Preeclampsia
PECAM	Platelet endothelial cell adhesion molecule
PGD2	Prostaglandin D2
PGI2	Prostacyclin
PIGF	Placental growth factor
PLT	Platelets
PPV	Positive predictive value
PRP	Platelet-rich plasma
PV	Prevalence
r	Correlation coefficient

Suist of Abbreviations

RANTES	Regulated upon activation, normal T-cell	
	expressed and secreted.	
RIBS	Receptor-induced binding site	
RNA	Ribonucleic acid	
ROC	Receiver operating characteristic curve	
ROS	Reactive oxygen species	
RR	Relative risk	
sCD40L	Serum soluble CD40 ligand	
SD	Standard deviation	
sFlt-1	Soluble form tyrosine kinase like receptor type-I	
Tct	Thrombocrit	
TFG	Transforming growth factor	
Th1	Helper T-cell type 1	
Th2	Helper T-cell type 2	
TNF-α	Tissue necrotic factor-alpha	
Trc	Platelet count	
TTP	Thrombotic thrombocytopenia	
TXA2	Thromboxane A2	
VEGF	Vascular endothelial growth factor	
vWF	Von willebrand factor	
αδSPD	Alpha-delta platelet storage pool deficiency	
12-HETE	12-hydroxyeicosatetrenoate	

List of Tables

List of Tables

Table N°	Table title	Page N°
1	Classification of hypertensive disorders complicating pregnancy by NHBPEP	6
2	Classification of preeclampsia according to severity	8
3	Platelet receptors with roles in adhesion	55
4	Distribution of normotensive cases according to MPV	71
5	Incidence of preeclampsia in normotensive cases	72
6	Statistical values in normotensive cases	72
7	Distribution of hypertensive cases according to MPV	73
8	Specificity and sensitivity in hypertensive cases	74
9	Statistical parameters values in hypertensive cases	75
10	Statistical parameters values in both groups	76
11	The use of cut point of MPV > 9.5 result in sensitivity of 92& a specificity of 84 % for the prediction of pre-eclampsia	76
12	P-value of MPV test	77
13	Correlation spearman coefficient of MPV test	78
14	Classification of cases according to development of pre-eclampsia	79

List of Figures

List of Figures

Fig. N°	Figure title	Page N°
Fig.1	Abnormal placentation in preeclampsia	21
Fig.2	Platelets lineage stem cell	43
Fig.3	Platelet role in inflammation mediators	54
Fig.4	Multiples roles of thrombin	54
Fig.5	Distribution of normotensive cases according to preeclampsia development	71
Fig.6	Distribution of hypertensive cases according to preeclampsia development	73
Fig.7	Distribution of hypertensive cases according to MPV and preeclampsia	74
Fig.8	ROC curve for MPV at 30 th -34 th gestational weeks in predicting development of preeclampsia in group II	75
Fig.9	mean & standard deviation for MPV of all cases in two groups	77
Fig.10	distribution of MPV in both groups	78
Fig.11	percentage of preeclampsia development in both groups.	79

₹ List of Boxes

List of Boxes

Box N°	Box title	Page N°
1	Risk factors for preeclampsia	9

Acknowledgements

First of all, I wish to express my sincere thanks to God for his care and generosity throughout of my life.

I would like to express my sincere appreciation and my deep gratitude to **Prof. Dr. Maged Abo Seda,**Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain-Shams University, who assigned the work.

I would like to express my great thanks to **Dr.Ahmed Abd El-Kader**, lecturer of Obstetrics and Gynecology, faculty of medicine, Ain Shams university for his great support throughout the whole work.

At last, I am indebted for family and friends for their great support, patience and continuous encouragement.

Fathy

Introduction

Pre-eclampsia (PE) is a pregnancy-specific multisystem disorder that is characterized by development of hypertension and proteinuria after 20 weeks of gestation, resolving by 6-12 weeks postpartum in a previous normotensive women (*Sibai et al.*, 2003). It occurs in about 5% to 10% of all pregnancies and results in substantial maternal and neonatal morbidity and mortality (*Cunningham et al.*, 2005).

Although the etiology of preeclampsia is still unclear, recent studies and successive hypothesis have been proposed, each being challenged by subsequent publications, the current most plausible hypothesis involves abnormal placentation leading to placenta ischaemia (*Chun Lam et al.*, 2005).

The pursuit of safe, reliable, and cost-effective screening tests for the prediction of preeclampsia has been the goal of researchers for many decades, with the aim of improving maternal and fetal surveillance, despite the fact that the only current effective treatment remains delivery.

Many candidates have been examined, including serum β -human chorionic gonadotropin, fibronectin, uric acid, urinary kallikrein, and urinary calcium, and angiotensin among others, but none has proven to be specific and sensitive enough to be of clinical value.