

Tissue Doppler Echocardiography for assessment of cardiac function in children with type 1 Diabetes Mellitus

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

By

Eman Mohamed Hussien

M.B.B.Ch.

Faculty of Medicine, Cairo University

Supervised By

Prof. Dr. Faten Mohamed Abd-El Aziz

Professor of Pediatrics

Faculty of Medicine, Cairo University

Prof. Dr. Shereen Abd-El Ghaffar Taha

Professor of Pediatrics

Faculty of Medicine, Cairo University

Dr. Aya Mohamed Fattouh

Assistant Professor of Pediatrics

Faculty of Medicine, Cairo University

Department of Pediatrics

Faculty of Medicine

Cairo University

2015

Acknowledgement

First and foremost I would like to thank **Allah** to whom I relate any success I have reached and might reach in the future.

Words are short to express my deep scene of gratitude towards **Prof. Dr. Faten Mohamed Abd-El Aziz,** Professor of Pediatrics and Pediatric Cardiology, Faculty of Medicine, Cairo University, for here valuable guidance, constant support and encouragement throughout the work. I doubt that I will ever be able to convey my appreciation fully, but I owe her my eternal gratitude.

I wish to express my sincere thanks to **Prof. Dr. Shereen Abd-El Ghaffar Taha,** Professor of Pediatrics and Pediatric Endocrinology, Faculty of Medicine, Cairo University, for her generous help, valuable directions, kind advice and remarkable suggestions to fulfill this work.

I would like to gratefully acknowledge **Dr. Aya Mohamed Fattouh,** Assistant Professor of Pediatrics and Pediatric Cardiology, Faculty of Medicine, Cairo University, for her meticulous supervision, useful comments, remarks and engagement through the learning process of this master thesis.

My special acknowledgment to **Prof. Dr. Magdy Ibrahim Mostafa,** Professor of Obstetrics & Gynecology and Director of Research & Biostatistics Unit, MEDC, Faculty of Medicine, Cairo University, for the precise statistics of this work.

Last but not least, I would like to dedicate this work to all my family whom I owe everything to them.

Abstract

Background: Impairment of cardiac function in patients with type1 Diabetes represents one of the serious complications. Tissue Doppler echocardiography is a recent modality of echocardiography which proved to have additional value in the evaluation of ventricular filling in diabetic patients. Objective: To evaluate the cardiac function in children with T1DM by conventional and tissue Doppler echocardiography. **Method:** In this cross-sectional study, echocardiography for 40 patients aged ≥ 6 years with T1DM for > 5 years was done and compared with that of 20 healthy age and sex matched children. Also comparison between patients according to their glycemic control and dyslipidemia was done. Results: RV-DD was found in 12.5% of patients and LV-DD was found in 12.5% of other patients and only one patient had both RV-DD and LV-DD. Subjects showed a significant difference in AO, LVIDd, LVIDs and FS% by M-mode. Tricuspid E wave velocity, tricuspid A wave velocity and mitral E wave velocity were found significantly higher in controls by PW Doppler. IRT of right ventricle, S' of left ventricle showed significant difference by TDI. We did not find any relation between glycemic control, duration of diabetes and dyslipidemia with evidence of cardiac dysfunction. Conclusion: Diastolic dysfunctions are present in type 1 diabetic patients and early detection of this dysfunction is of great importance, because in the early stages medical interventions could prevent or delay progression and reduce the risk of developing heart failure in individuals with diabetes mellitus.

Key Words: Type 1 diabetes mellitus, tissue Doppler echocardiography, diastolic dysfunction, glycemic control, children.

Contents

	Page
List of abbreviations	5
List of figures	7
List of tables	8
Introduction	11
Aim of work	12
Review of literature	13
Chapter 1: Type 1 diabetes mellitus	14
Chapter 2: Cardiovascular complications of T1DM	43
Chapter 3: Echocardiography	61
Subjects and methods	74
Results	82
Discussion	100
Summary	109
Conclusion	111
Recommendations	112
References	113
Arabic summary	140

LIST OF ABBREVIATIONS

A'	Late tissue diastolic wave
ACE	Angiotensin converting enzyme
ADA	American Diabetes Association
AGEs	Advanced Glycation End products
AHA	American Heart Association
AO	Aorta
ARBs	Angiotensin Receptors Blockers
A wave	Late diastolic filling velocity (atrial contraction)
BG	Blood Glucose
BMI	Body mass index
BP	Blood pressure
CAD	Coronary Artery Disease
CAN	Cardiac autonomic neuropathy
СНО	Carbohydrate
cIMT	carotid Intima Media Thickness
СО	Cardiac output
CVD	Cardiovascular disease
CW Doppler	Continuous-wave Doppler echocardiography
DBP	Diastolic blood pressure
DCCT	Diabetes Control and Complications Trail
DCM	Diabetic cardiomyopathy
DEMPU	Diabetes, Endocrine and Metabolism Pediatric Unit
DKA	Diabetic ketoacidosis
DM	Diabetes mellitus
DMD	Diabetic myocardial disease
DR	Diabetic retinopathy
DT	Deceleration time
E'	Early tissue diastolic wave
ECG	Electrocardiography
EF	Ejection fraction
ET	Ejection time
E wave	Early diastolic filling velocity
FBG	Fasting Blood Glucose
FS	Fractional shortening
GAD	Glutamic acid decarboxylase
GFR	Glomerular filtration rate
HbA1c	Glycosylated hemoglobin
HDL	High density lipoprotein
HF	Heart failure
HHS	Hyperglycemic hyperosmolar state
1	1

HNF	Hepatocyte nuclear factor
HRV	Heart rate variability
IA	Islet cell auto antibodies
IAAs	Insulin autoantibodies
IFG	Impaired Fasting Glucose
IGT	impaired Glucose Tolerance
INS	Insulin gene
IVCT	isovolumic contraction time
IVRT	isovolumic relaxation time
IVSd	Inter ventricular septal wall at end diastole
LA	Left atrium
LDL	Low density lipoprotein
LV	Left ventricle
LV-DD	Left ventricular diastolic dysfunction
LVH	Left Ventricular Hypertrophy
LVIDd	Left ventricular internal dimensions at end diastole
LVIDs	Left ventricular internal dimensions at systole
MHC	Major histocompatibility complex
MI	Myocardial infarction
MODY	Maturity onset diabetes of the young
MPI	Myocardial performance index
NGSP	National Glycohemoglobin Standardization Program
OGTT	Oral Glucose Tolerance Test
PD	P wave dispersion
PNF	pseudo normal filling
PPBG	Postprandial Blood Glucose
PVD	Peripheral vascular disease
PW Doppler	Pulsed-wave Doppler echocardiography
PWTd	thickness of left ventricular wall at end diastole
QTc	Corrected QT interval
RV-DD	right ventricular diastolic dysfunction
S'	Systolic wave
SBP	Systolic blood pressure
T1DM	Type 1diabetes mellitus
T2DM	Type 2 diabetes mellitus
TDI	Tissue Doppler imaging
TG	Triglycerides
TSCs	Tissue stem cells
USA	United states of America
WHO	World Health Organization
1,25(OH)2D3	1,25 dihydroxy calcitriol

LIST OF FIGURES

Figure no.	Title	page
Figure (1)	Stages of development of type 1 diabetes	22
Figure (2)	Mean annual incidence rates for T1D comparing	25
	different countries in the world	
Figure (3)	The major Diabetes complications	28
Figure (4)	Risk factors for the development of vascular	46
	complication in adolescents with type1 diabetes	
Figure (5)	Left: End-systolic LA volumes from an elite athlete.	65
	Right: Normal mitral inflow pattern acquired by PW	
	Doppler from the same subject	
Figure (6)	Schematic diagram of the changes in mitral inflow in	66
	response to the transmitral pressure gradient	
Figure (7)	Mitral annular Doppler tissue imaging	70
Figure (8)	Scheme for grading diastolic dysfunction	71
Figure (9)	Grade 1 right ventricular diastolic dysfunction	75

LIST OF FIGURES OF RESULTS

Figure no.	Title	Page
Figure (1)	Percentage of RV-DD between patients	91
Figure (2)	Percentage of LV-DD between patients	92
Figure (3)	Percentage of Glycemic control between patients	93
Figure (4)	Percentage of Dyslipidemia between patients	96

LIST OF TABLES

Table no.	Title	Page
Table (1)	Etiological classification of disorders of glycaemia	20
Table (2)	Autoimmune diseases associated with T1DM	22
Table (3)	Criteria for diagnosis of diabetes	26
Table (4)	Categories of increased risk for diabetes	27
Table (5)	International clinical DR disease severity scale	33
Table (6)	Neuropathies in diabetes	34
Table (7)	Factors determining the glycemic response to acute	38
	exercise	
Table (8)	Diabetic Heart Disease	44
Table (9)	Target levels to reduce the risk of microvascular and	47
	CVD in children and adolescents with type1 diabetes	
Table (10)	Ewing score	51
Table (11)	Factors affecting LV filling	57
Table (12)	Echocardiographic finding of DMD	61

LIST OF TABLES OF RESULTS

Table no.	Title	Page
Table (1)	Descriptive statistics of demographic and	83
	anthropometric data of diabetic patients	
Table (2)	Descriptive statistics of blood pressure data of	84
	diabetic patients	
Table (3)	Descriptive statistics of laboratory data of diabetic	84
	patients	
Table (4)	The results of M-mode echocardiography of diabetic	85
	patients	
Table (5)	The results of M-mode echocardiography of controls	85
Table (6)	Comparison between M-mode echocardiography data	86
	of patients and controls	
Table (7)	Descriptive statistics of pulsed wave	87
	echocardiography data of patients	
Table (8)	Descriptive statistics of pulsed wave	88
	echocardiography data of controls	
Table(9)	Comparison between Pulsed Wave echocardiography	89
	data of patients and controls	
Table(10)	Comparison between Tissue Doppler	90
	echocardiography data of patients and controls	

Table(11)	Comparison between demographic, anthropometric,	91
	laboratory and ECG data of patients in relation to	
	Right Ventricular diastolic dysfunction	
Table(12)	Comparison between demographic, anthropometric,	93
	laboratory and ECG data of patients in relation to	
	Left Ventricular diastolic dysfunction	
Table(13)	Comparison between M-mode echocardiography data	94
	of patients in relation to diabetes glycemic control	
Table(14)	Comparison between Pulsed Wave echocardiography	95
	data of patients in relation to diabetes glycemic	
	control	
Table(15)	Comparison between Tissue Doppler	96
	echocardiography data of patients in relation to	
	diabetes glycemic control	
Table(16)	Comparison between M-mode echocardiography data	97
	of patients in relation to Dyslipidemia	
Table(17)	Comparison between Pulsed Wave echocardiography	98
	data of patients in relation to Dyslipidemia	
Table(18)	Comparison between Tissue Doppler	99
	echocardiography data of patients in relation to	
	Dyslipidemia	

INTRODUCTION AIM OF THE WORK

INTRODUCTION

Impairment of cardiac function in patients with type1 Diabetes represents one of the serious complications and if present, may affect the quality of life and prognosis of the disease (**Elshahed et al., 2008**).

Studies on adults have reported that patients with type 1 Diabetes show ultra-structural and functional myocardial deterioration (**Eun et al., 2010**). Similarly, it has been reported that young patients with type1 Diabetes have significant changes in left ventricular dimension and myocardial relaxation (**Suys et al., 2004**).

Children and young adolescents with type1 diabetes rarely have insight on regarding their disease and their diet is accordingly difficult to control. Therefore, alteration of cardiac function in these patients may begin earlier than is generally thought and these changes may be accelerated when glycemic control is poor.

Echocardiography is a non-invasive method that can be used for the diagnosis of Diabetic cardiomyopathy or Diabetes induced myocardial dysfunction. Tissue Doppler echocardiography is a recent modality of echocardiography which proved to have additional value in the evaluation of ventricular filling in diabetic patients (**Eun et al., 2010**).

Conventional and tissue Doppler echocardiography can predict early stages and progression of diabetic cardiac changes, so assessment particularly by tissue Doppler is warranted in patients with type1 Diabetes to follow the progression from subclinical to symptomatic ventricular dysfunction (**Elshahed et al., 2008**).

However, studies which evaluated the use of Tissue Doppler in detection of cardiac dysfunction in children with type1 diabetes are few and conflicting.

AIM OF THE WORK

• Assessment of systolic and diastolic functions of left and right ventricles in patients with Type1 Diabetes by conventional and Tissue Doppler Echocardiography.

REVIEW OF LITRATURE

CHAPTER ONE

TYPE 1 DIABETES MELLITUS (T1DM)

Definition

Diabetes is a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. The chronic hyperglycemia of diabetes is associated with long term damage, dysfunction and failure of different organs, especially the eyes, kidneys, nerves, heart and blood vessels (American Diabetes Association, 2013a).

Etiology

T1DM is a multifactorial disease thought to arise from complex interaction between both genetic susceptibility and environmental insults (Fowler, 2007)

Genetic factors

In disorders following a Mendelian pattern of autosomal dominant or recessive transmission the pattern of inheritance of the disease phenotype is usually obvious. It is much more difficult in diabetes to confidently define the reported linkage susceptibility genes (**Moussa et al., 2005**).

Although the genetic aspect of T1DM is complex, with multiple genes involved, there is a high sibling relative risk. Whereas dizygotic twins have a 5-6% concordance rate for T1DM (Steck et al., 2005), Monozygotic twins will share the diagnosis more than 50% of the time by the age of 40 years (Redondo et al., 2008). The genetic contribution to T1DM is also reflected in the significant variance in the frequency of the disease among different ethnic populations, T1DM is most prevalent in European population, with people from northern Europe more often affected than those from Mediterranean regions (Borchers et al., 2010).

Among the genetic determinant of susceptibility, with more than 18 putative loci identified to date, a region in chromosome 6p21 (IDDM1) containing the major histocompatibility complex (MHC) is the only one consistently associated with T1DM in genome wide screenings. Candidate gene studies also identified the insulin gene (INS) on chromosome 11 (IDDM2) as the second most important genetic susceptibility factor, contributing 10% of genetic susceptibility to T1DM (**Thomson et al., 2007**).

A hierarchy of DR-DQ halotypes associated with increased risk for T1DM has been established. The most susceptible halotypes are as follows (Erlich et al., 2008):

- DRB1*0301 DQA1*0501 DQB1*0201 (odds ratio
 [OR] 3.64)
 - DRB1*0405 DQA1*0301 DQB1*0302 (OR 11.37)
 - DRB1*0401 DQA1*0301 DQB1*0302 (OR 8.39)
 - DRB1*0402 DQA1*0301 DQB1*0302 (OR 3.63)
 - DRB1*0404 DQA1*0301 DQB1*0302 (OR 1.59)
 - DRB1*0801 DQB1*0401 DQB1*0402 (OR 1.25)

Other halotypes appear to offer protection against T1DM. These include the following (Erlich et al., 2008):

- DRB1*1501 DQA1*0102 DQB1*0602 (OR 0.03)
- DRB1*1401 DQA1*0101 DQB1*0503 (OR 0.02)
- DRB1*0701 DQA1*0201 DQB1*0303 (OR 0.02)

Environmental factors

Environmental influence is another important factor in the development of T1DM. The best evidence for this influence is the demonstration in multiple population of a rapid increase in the incidence