

Molecular and computational characterization of resistance genes of *Culex pipiens* complex mosquitoes

A Thesis

Submitted to the Department of Entomology, Faculty of Science, Ain Shams University For the award of the Ph. D. Degree (Entomology)

By

Enas Hamdy Saad Mohamad Ghallab

M. Sc.

Supervisors

Prof. Dr. Magdi G. Shehata

Professor of Medical Entomology Entomology Department, Faculty of Science Ain Shams University

Prof. Dr. Hoda A. Farid

Professor of Medical Entomology Entomology Department, Faculty of Science Ain Shams University

Prof. Dr. Ragaa E. Hammad

Professor of Medical Entomology Entomology Department, Faculty of Science Ain Shams University

Dr. Doaa E. Soliman

Lecturer of Entomology Entomology Department, Faculty of Science Ain Shams University

Prof. Dr. Harry M. Savage

Chief of Ecology and Entomology Activity, Arbovirus Disease Branch Centers for Disease Control and Prevention Fort Collins, CO., USA

> Entomology Department Faculty of Science Ain Shams University 2016

Biography

Name: Enas Hamdy Saad Mohamad Ghallab

Degrees Awarded: B.Sc. (Entomology) 2005

M.Sc. (Entomology) 2010

Department: Entomology

Faculty: Science

University: Ain Shams

Occupation: Assistant lecturer in Department of Entomology,

Faculty of Science, Ain Shams University.

Date of Registration for Ph.D.: September, 2011

SUPERVISORS

Prof. Dr. Magdi G. Shehata

Professor of Medical Entomology
Department of Entomology, Faculty of Science
Ain Shams University

Prof. Dr. Hoda A. Farid

Professor of Medical Entomology
Department of Entomology, Faculty of Science
Ain Shams University

Prof. Dr. Ragaa E. Hammad

Professor of Medical Entomology
Department of Entomology, Faculty of Science
Ain Shams University

Dr. Doaa E. Soliman

Lecturer of Entomology, Department of Entomology Faculty of Science, Ain Shams University

Prof. Dr. Harry M. Savage

Chief of Ecology and Entomology Activity, Arbovirus Disease Branch Centers for Disease Control and Prevention, Fort Collins, CO., USA

Acknowledgment

Thanks first and last to Allah for the utmost help and support during this work.

I wish to express my greatest gratitude, thanks and appreciation to *Prof. Dr. Magdi G. Shehata*, Professor of Medical Entomology, Faculty of Science, Ain Shams University, for his supervision, his kind encouragement and valuable advice.

Heartfelt thankfulness goes to *Prof. Dr. Hoda A. Farid*, Professor of Medical Entomology, Faculty of Science, Ain Shams University, for her supervision, her consistent scientific advice and guidance. Her invaluable effort made possible the achievement of this work.

Warmest thankfulness goes also to *Prof. Dr. Ragaa E. Hammad*, Professor of Medical Entomology, Faculty of Science, Ain Shams University, for her supervision, her unfailing guidance and support and her critical reviewing and guidance through finishing this thesis.

Deepest thanks to *Dr. Doaa E. Soliman*, Lecturer of Entomology, Ain Shams University, for her supervision, her help, encouragement and profound supervision in different research aspects.

I am very grateful to *Dr. Harry M. Savage*, Chief Ecology and Entomology Activity, Arbovirus Disease Branch, Centers for Disease Control and Prevention, Fort Collins, Co.,

USA, for his professional advices, profound supervision, for the support and space to conduct this research project and for identifying *Culex pipiens* collected in Egypt.

I am very grateful to *Dr. Emad I. Khater*, Assistant professor of Entomology, Ain Shams University, for his continuous scientific follow up, assisting and directing my thinking to new research dimensions.

I would like to express my sincere appreciation to *Dr. Linda Kothera*, Associate Service Fellow at Centers for Disease Control and Prevention, Fort Collins, Co., USA, for suggesting the research topic, training on research methods used, continuous support and for her scientific guidance and directions through the research.

I would like to thank the *Egyptian Ministry of Higher Education (MoHE)*, *Cultural affairs and Mission sector*, for providing the financial assistance (Joint scholarship) for this research, as well as the *Centers for Disease Control and Prevention*, Fort Collins, Co., USA, for offering the facilities and tools needed to conduct this work.

Many thanks goes to the American Mosquito Control Districts of: New Orleans (Louisiana), Dallas (Texas) and Florence (Mississippi) in the USA for providing us with *Culex quinquefasciatus* egg rafts. Also thanks goes to the Research Institute of Medial Entomology in Cairo, Egypt, for providing us with *Culex pipiens* larvae.

A special thanks to Centers for Disease Control and Prevention, Fort Collins, Co., USA, sequencing team for samples processing.

Thanks are also to *Prof. Dr.* Adel Kamal the head of Entomology Department, Faculty of Science, Ain Shams University.

My thanks are also passed to the staff members and colleagues of Entomology Department for the various help they offered me.

Dedication

I dedicate this thesis to my family for the support they have shown me and my sincere thanks are also due to who suffered a lot during the preparation of this work.

I truly appreciate my mother *Somayah*, father *Hamdy Ghallab*, sisters *Eman* and *Aya* for all their love and encouragement they have given me throughout my life.

Finally, I would like to express my sincere gratitude, love and appreciation to *Mr. Jerry Arbogast* and *Mrs. Franci Calderone* for their continuous help, encourage, support, for providing me with a lot of positive energy and self-confidence and finally for taking care of me while I was abroad.

Abstract

Enas Hamdy Saad Mohamad Ghallab. Molecular and computational characterization of resistance genes of *Culex pipiens* complex mosquitoes, Faculty of Science, Ain Shams University, 2016.

Mosquitoes in the *Culex pipiens* complex, the primary vectors of diseases, have been exposed to repeated applications of insecticides, particularly pyrethroids, which resulted in the development of resistance. Detoxification enzymes play a major role in the development of insecticide resistance. Two glutathione S-transferase (GST) genes responsible for insecticide resistance: CPIJ002663 "CpGSTD5/CqGSTD5" and CPIJ002681 "CqGSTD11", were presently used in a comprehensive molecular analysis for differentiating resistant and susceptible individuals of Cx. pipiens and Cx. quinquefasciatus collected from Egypt and the United States of America, respectively. Gene amplification, sequencing and cloning, were analyzed via bioinformatics databases. Data indicated 79.8% and 80.9% similarity of amplified CpGSTD5/CqGSTD5 respectively, to CPIJ002663 gene, whereas CqGSTD11 gene yielded 98% similarity to CPIJ002681 gene. The identity of translated amino acid sequences of these two genes was 99% for CpGSTD5 and CqGSTD5, and 96% for CqGSTD11. Although alignment of obtained amino acids sequences in NCBI conserved domains perceived polymorphic loci, the overall results revealed that no specific molecular marker for differentiating susceptible and resistant individuals was identified.

Keyword: *Cx. pipiens* complex, Detoxification enzyme, GSTs, Insecticide resistance.

Contents

Title	
I. Introduction.	1
Aim of the work	6
II. Literature Review	7
Insecticide resistance problem in mosquito control	7
Insecticide resistance mechanisms	
3. Detoxification enzymes	11
4. Surveillance and management of insecticide resistance	13
4.1. Tracking mosquito baseline susceptibility to pyrethroids	13
4.2. Molecular mechanisms of insecticide detoxification in	
mosquitoes	18
4.3. Biological implications of insecticide resistance	27
III. Materials and Methods	30
1. Origin of tested mosquitoes	30
1.1. Culex quinquefasciatus	30
1.2. Culex pipiens	33
2. Insecticide Bioassay	34
3. Molecular studies	
3.1. DNA extraction	
3.1.1. Robotic DNA extraction	
3.1.2. Manual DNA extraction	
3.2. Molecular identification and confirmation of mosquito	
species using the rDNA-ITS region	44
3.3. Detection of insecticide resistance genes	46
3.3.1. Amplification of Glutathione S-transferases (GST) genes	46
3.3.1.1. Primer design	46 50
3.3.1.2. PCR Purification.	
3.3.1.3. Direct Sequencing	51
3.3.1.4. Cloning	51
3.4. Data Analysis	
IV. Results	59
1. Collection of <i>Culex</i> mosquitoes	
Determination of insecticide resistance	60
3. Molecular studies	65
3.1. Molecular identification and confirmation of mosquito species using the rDNA-ITS region	65

3.2. Detection of insecticide resistance genes	67
3.2.1.Primer design via database homology search for potential GST genes.	67
GST genes	
genes	70
3.2.3. Bioinformatics analysis of gene sequences	75
3.2.3.1. Sequence identity of the sequenced genes, CpGSTD5,	
CqGSTD5 and CqGSTD11	76
3.2.3.2. Protein orthologues of the sequenced genes, CpGSTD5,	
CqGSTD5 and CqGSTD11	77
3.2.3.3. Polymorphism analysis	82
3.2.3.4. Phylogenetic analysis	85
V. Discussion and Conclusions	89
1. Insecticide susceptibility/resistance status	89
2. Molecular characterization of CpGSTD5, CqGSTD5 and	
CqGSTD11 in members of the <i>Cx. pipiens</i> complex	94
2.1. Amplification, sequencing and cloning of selected GST	
genes	97
2.2. Identity of sequenced genes	100
2.3. Phylogenetic analysis	
VI. Summary	104
VII. References	
Arabic Summary	

List of Tables and Figures

I- Tables

Table	Title	Pages
Table 1	Primers used to amplify rDNA-ITS region (Crabtree et	
	al., 1995)	45
Table 2	Designed primers for six GST genes	48
Table 3	Culex pipiens adults collected from Egypt	59
Table4	Culex quinquefasciatus populations collected from the	
	USA	60
Table 5	Mortality of Cx. quinquefasciatus populations from	
	treated and untreated areas in the USA after exposure	
	to diagnostic doses of permethrin	63
Table 6	Mortality of Cx. quinquefasciatus populations from	
	treated and untreated areas in the USA after exposure	
	to diagnostic doses of malathion	64
Table 7	Primer pairs used for the amplification of the selected	
	genes	71
Table 8	Polymorphic positions in amino acids of studied genes	
	and their status	83

II- Figures

Figure	Legend	Pages
Fig. 1	Illustrated map showing Cx. quinquefasciatus egg rafts	
	collection areas in USA. Arrows point to each of three	
	collection sites: Texas, Louisiana and Mississippi	32
Fig. 2	Adult mosquitoes in "modified ice cream carton" rearing	
	cages	32
Fig. 3	Illustrated map showing Cx. pipiens larval collection areas	
	(stars) in Egypt	34
Fig. 4	Wheaton bottles (250 ml) used in CDC Bottles	
	Bioassay	35
Fig. 5	Replicates of three sets of Wheaton bottles used in the	
	bioassay and ready for mosquito testing	35
Fig. 6	(a) The BioRobot Universal System® machine.	
	(b) Composition of the internal Worktable setup of the	
	robotic machine, where: (1) is the tip-tray holder, (2) cooling	
	and heating system, (3) Vacuum base, and (4) multi-well	
	plate holder	39
Fig. 7	BB beads.	40
Fig. 8	96 wells' S block.	40
Fig. 9	Mixer mill, with the white racks fixed in position	40
Fig. 10	96-well plates centrifuge.	42
Fig. 11	Screenshot of the sample tracking system through the	
	BioRobot Universal System® software	42
Fig. 12	Diagram illustrating the composition of rDNA region, and	
	the positions of the primers used in the amplification of this	
	region in Cx. quinquefasciatus and Cx. pipiens (Crabtree et	
	al., 1995), and differentiating it from Cx. restuans, where	
	"18S, ITS1, 5.8S, ITS2 and 28S" are the rDNA region parts	
	and "PQ10, R6 and CP16" are the primers used in the	
	amplification process.	44
Fig. 13	Illustration of the composition of the pCR TM 4-TOPO® TA	
	vector, (TOPO® TA Cloning® Kit for Sequencing: User	
	guide.	52
Fig. 14	Mortality of adult Cx. quinquefasciatus in bottles treated	
	with permethrin (400 μg/bottle)	63
Fig. 15	Mortality of adult Cx. quinquefasciatus in bottles treated	
	with malathion (43 μg/bottle)	64

Fig. 16	Amplification of the rDNA-ITS region (\approx 700bp) from Cx .	
	pipiens field-collected in Egypt. QL: Qaliubiya, Ca: Cairo,	
	G: Giza, Bs: Beni-Suef and Fa: Faiyoum populations. (+ve)	
	is the positive control ITS2 of Cx . restuans (\approx 500 bp)	
	and (-ve) is the blank control	66
Fig. 17	Amplification of the rDNA-ITS region from Cx.	
	quinquefasciatus collected in the USA (≈700bp). (+ve) is	
	the positive control ITS2 of Cx. restuans (\approx 500 bp) and	
	(-ve) is the blank control	66
Fig. 18	Alignment of the amino acids of the six annotated selected	
	genes by CLUSTALW showing the extent of similarity	
	among these genes.	68
Fig. 19	Diagram of the positions of the two protein conserved	
	domains of the GST family in the six selected genes	
	(CPIJ018629, CPIJ002678, CPIJ010814, CPIJ002681,	
	CPIJ002680 and CPIJ002663) using Pfam database.	
		70
Fig. 20	Diagram showing the structural compositions of	
	CPIJ002663 and CPIJ002681 genes.	72
Fig. 21	Amplification of CPIJ002663 gene (≈ 556bp) from	
	populations of Cx. pipiens and Cx. quinquefasciatus	
	collected from Egypt and the USA. QL's: Qaliubiya	
	population, Ca's: Cairo population, G's: Giza population,	
	Bs's: Beni suef population and Fa's: Faiyum population. (-	
	ve) is the blank control. FLO's: Florence treated families,	
	NOT's: New Orleans treated families, TXU's: Texas	
	untreated families, TXT's: Texas treated families, NOU's:	
	New Orleans untreated families and MSU's: Mississippi	74
Fig. 22	untreated families, all from USA	/-
11g. 22	populations of Cx . quinquefasciatus collected from the USA.	
	FLO's: Florence treated families, NOT's: New Orleans	
	treated families, TXU's: Texas untreated families, TXT's:	
	Texas treated families, NOU's: New Orleans untreated	
	families and MSU's: Mississippi untreated families	74
Fig. 23	Alignment of the translated amino acids of CpGSTD5 and	, -
- 15. 20	CqGSTD5 with the predicted amino acid sequences of	
	CPIJ002663 and their orthologues in Ae. aegypti	
	"AAGSTD5" and An. gambiae "AgGSTD2" by	
	CLUSTALW	78
	CLUSTALW	/

Fig. 24	Schematic diagram for the structure of CqGTD5 and CpGSTD5 proteins and its orthologues in <i>Ae. aegypti</i> (AaGSTD5) and <i>An. gambiae</i> (AgGSTD2), based on the analysis of NCBI conserved domain database compared to	
	the annotated CPIJ002663 protein structure	79
Fig. 25	Alignment of the translated amino acids of CqGSTD11 with the predicted amino acid sequences of CPIJ002681 and their orthologues in <i>Ae. aegypti</i> "AAGSTD11" and <i>An. gambiae</i>	
	"AgGSTD11" by CLUSTALW	80
Fig. 26	Schematic diagram for the structure of CqGSTD11 proteins and its orthologues in <i>Ae. aegypti</i> (AaGSTD11) and <i>An. gambiae</i> (AgGSTD11), based on the analysis of NCBI conserved domain database, compared to the annotated	
	CPIJ002681 protein structure.	81
Fig. 27	NJ tree based on aligned 528 nucleotides of CpGSTD5 and CqGSTD5 generated from 90 representative samples of <i>Cx. pipiens</i> from Egypt (EM1-3) and six <i>Cx. quinquefasciatus</i> populations from the USA. The accession name of <i>Cx. quinquefasciatus</i> sequences retrieved from VectorBase is: CPIJ002663. Bootstrap values obtained by 1000 replicates	
	are indicated on the tree branches	86
Fig. 28	NJ tree based on aligned 694 nucleotides of CqGSTD11 generated from 80 representative samples of <i>Cx. quinquefasciatus</i> populations. The accession name of <i>Cx. quinquefasciatus</i> sequences retrieved from VectorBase is: CPIJ002681. Bootstrap values obtained by 1000 replicates	
Fig. 29	are indicated on the tree branches	87
	USA, with their orthologous in Cx. quinquefasciatus, Ae. aegypti and An. gambiae The accession name of Cx.	
	quinquefasciatus sequences retrieved from VectorBase are: CPIJ002663 and CPIJ002681. Ae. aegypti and An. gambiae	
	accession no. are (AAEL001071, AGAP004173) and	
	(AAEL010582, AGAP004378), were used as outgroup taxon. Bootstrap values obtained by 1000 replicates are	
	indicated on the tree branches.	88

List of Abbreviations

18S	18S ribosomal RNA
28S	28S ribosomal RNA
5.8S	5.8S ribosomal RNA
aa	amino acid
BA-1 grinding buffer	bovine serum albumin grinding buffer
BB	Beaded Beads
Bti	Bacillus thuringiensis israelensis
CCEs	Carboxyl/cholinesterases
CDC	Centers of Disease Control and prevention
CDs	Conserved domains
Cyt P450/ P450	Cytochrome P450
DDE	dichlorodiphenyldichloroethylene
DDT	dichlorodiphenyltrichloroethane
E. coli	Escherichia coli
EM	Egyptian mosquitoes
FISH	Fluorescent in situ hybridization
GSH	reduced Glutathione
G-site	GSH binding site
GSTs	Glutathione S-transferases
H-site	hydrophobic substrate binding
ITN	insecticide-treated nets
ITS	Internal transcribed spacer
IUPAC	International Union of Pure and Applied Chemistry
kdr	knockdown resistance
LB broth	Luria Bertani growth medium
NADPH reductase	nicotinamide adenine dinucleotide phosphate
	reductase
NJ trees	neighbor-joining tree
OPs	Organophosphates
ORF	open reading frame
PBS	Phosphate-buffered saline
PSI blast	Position specific Iterated blast
rDNA	Ribosomal DNA
rpm	Rotation per minute
RT-PCR	Reverse Transcription Polymerase Chain Reaction
S.O.C.	Super Optimal Catabolite Medium
SDS-PAGE	Sodium Dodecyl Sulfate Polyacrylamide Gel
	Electrophoresis
S-Lab	laboratory susceptible strains
SNP	Single nucleotide polymorphism
tBLASTn	Translated, Basic Local Alignment Search Tool is
	an algorithm, nucleotides
х g	times gravity