Ain Shams University Faculty of Medicine Department of Obstetrics & Gynecology

A Thesis submitted for Partial Fulfillment of M.D. Degree in Obstetrics & Gynecology

"Evaluation of Tolterodine Tartrate versus Placebo in the Treatment of Overactive Bladder"

By

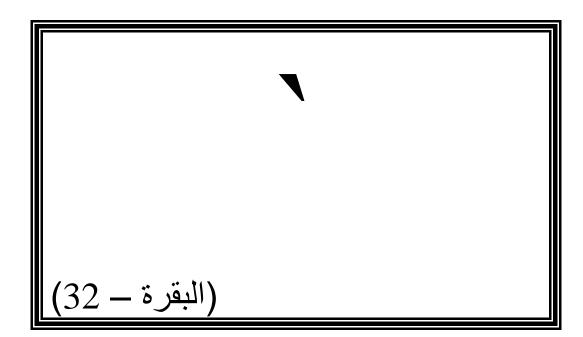
Ihab Ibrahim Samaha

MBBCh, MSc Obstetrics & Gynecology
Faculty of Medicine - Ain Shams University

Under the Supervision of

Dr. Mohamed Adel El-Nazer Professor of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University

Dr. Hesham Mohamed Fathy Professor of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University


Dr. Khaled Hassan Ahmed Swidan Professor of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University

> Dr. Iman Ibrahim Salama Professor of Community Medicine National Research Centre

> > CAIRO 2005

b

هِ قَالُواْ سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ مَا عَلَّمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ الْحَلِيمُ الْحَلَيْمُ الْحَلْمُ الْحَلَيْمُ الْمَلْمُ الْحَلَيْمُ الْحَلْمُ الْحُلْمُ الْحُلْمُ الْحَلْمُ الْحَلْمُ الْحَلْمُ الْحَلْمُ الْحَلْمُ الْحَلْمُ الْحَ

ACKNOWLEDGMENTS

First of all thanks to almighty God, the most kind and most merciful.

I wish to express my deepest gratitude and sincere appreciation to *Dr. Mohamed Adel El-Nazer*, Professor of Obstetrics & Gynecology, Ain Shams University. His guidance and collaboration helped me to overcome the obstacles and difficulties that arose along the way until finally the thesis was completed.

I would like to thank *Dr. Hesham Mohamed Fathy,* Professor of Obstetrics & Gynecology, Ain Shams University, for offering me much of his time and experience throughout the whole work.

I am greatly indebted to *Dr. Khaled Hassan Ahmed Swidan*, Professor of Obstetrics & Gynecology, Ain Shams University, for his tremendous assistance, continuous guidance, enthusiastic support and meticulous work without which this work would have not been possible.

Many thanks go to *Dr. Iman Ibrahim Salama*, Professor of Community Medicine, National Research Centre.

I can not also forget the staff of the Urogynecology Unit (Ain Shams University Maternity Hospital) especially *Dr. Hamdy Ahmed Saaid* for their devotion and help. Their contribution to this work was invaluable.

Special thanks go to my family, my fiancée, and friends who have given me day to day support when progress was slow and my morale was flagging when there were long hours of bookwork to be completed and disappointments to overcome.

Finally my heart felt thanks to all the patients that participated in this work, I wish it would be of benefit for the patients in the future.

CONTENTS

List of Tables	VII
List of Figures	IX
List of Abbreviations	XIII
Introduction	1
Aim of the Work	3
Review of Literature	
I) Anatomy of the Female Urinary Tract	5
II) The Overactive Bladder: Prevalence and Effects on Quality of Life	33
III) Pathophysiology of the Overactive Bladder	47
IV) Evaluation and Diagnosis of the Overactive Bladder	65
V) Pharmacotherapy of the Overactive Bladder	87
Patients and Methods	111
Results	129
Discussion	165
Summary	179
Conclusions and Recommendations	185
References	187
Arabic Summary	

LIST OF TABLES

Table 1	Topography of urethral and para-urethral structures	10
Table 2	Conditions that mimic overactive bladder	40
Table 3	Top 10 incontinence-related quality of life items	45
Table 4	Pharmaceuticals for overactive bladder and their side effects	88
Table 5	BMI reference values	117
Table 6	Baseline demographics of both groups	131
Table 7	Age descriptive and analytical statistics between both groups	131
Table 8	BMI descriptive and analytical statistics between both groups	132
Table 9	Comparison between baseline and week 12 micturition diary variables characteristics in the tolterodine group	134
Table 10	Analytical statistics of the micturition diary variables as regard the difference between baseline and week 12 in the tolterodine group	137
Table 11	Comparison between baseline and week 12 cystometric and PVRV characteristics in the tolterodine group	138
Table 12	Analytical statistics of the cystometric and PVRV characteristics as regard the difference between baseline and week 12 in the tolterodine group	141
Table 13	Comparison between baseline and week 12 micturition diary variables characteristics in the placebo group	142
Table 14	Analytical statistics of the micturition diary variables as regard the difference between baseline and week 12 in the placebo group	145
Table 15	Comparison between baseline and week 12 cystometric and PVRV characteristics in the placebo group	146
Table 16	Analytical statistics of the cystometric and PVRV characteristics as regard the difference between baseline and week 12 in the placebo group	150
Table 17	Comparison between baseline micturition diary variables	151

	characteristics in both groups	
Table 18	Comparison between week 12 micturition diary variables characteristics in both groups	152
Table 19	Analytical statistics of the micturition diary variables as regard the difference between baseline and week 12 in both groups	155
Table 20	Comparison between baseline cystometric and PVRV characteristics in both groups	155
Table 21	Comparison between week 12 cystometric and PVRV characteristics in both groups	156
Table 22	Analytical statistics of the cystometric and PVRV characteristics as regard the difference between baseline and week 12 in both groups	160
Table 23	Effect of 12 weeks' treatment with tolterodine or placebo on subjective assessment of bladder symptoms in patients with OAB	161
Table 24	Adverse events in both groups	162
Table 25	Tolterodine tartrate IR vs. placebo	173

LIST OF FIGURES

Figure 1	Longitudinal section through a 4-week embryo; a 5-week embryo; a 6-week embryo; an 8-week embryo	6
Figure 2	Schematic diagram of the striated urogenital sphincter muscle and trigonal musculature within the bladder base and urethra (cut in sagittal section)	9
Figure 3	Striated urogenital sphincter muscle seen from below after removal of the perineal membrane and pubic bones	11
Figure 4	Supportive tissues of the cervix and upper vagina	16
Figure 5	Level I (suspension) and level II (attachment)	17
Figure 6	Levator ani muscles seen from below	21
Figure 7	Topography and mobility of the normal proximal urethra and vesical neck based upon resting and voiding in nulliparae	26
Figure 8	Space of Retzius (drawn from cadaver dissection)	27
Figure 9	Relationship of the supportive tissues of the urethra to the pubovesical muscles	28
Figure 10	Lateral view of the pelvic floor structures related to urethral support, seen from the side in the standing position cut just lateral to the midline	30
Figure 11	Lateral view of pelvic floor with the urethra, vagina and fascial tissues transected at the level of the vesical neck	31
Figure 12	Voiding diary	72
Figure 13	Cystourethrometry in a 42-year-old woman with multiple sclerosis and detrusor hyperreflexia showing urinary leakage secondary to a synchronous rise in detrusor pressure and fall in urethral pressure	80
Figure 14	Role of the intestinal epithelium in the absorption and metabolism of orally administered drugs	91
Figure 15	Differences in absorption and metabolism of normal and controlled-release oxybutinin	92
Figure 16	A soft balloon reservoir as the drug delivery device.	101

Figure 17	The switch in afferent contribution to the micturition reflex from A-delta predominant to C-fiber predominant after spinal cord transection or after the development of inflammatory disease.	102
Figure 18	The use of herpes simplex virus (HSV) as a vector for directed transfection of afferent nerves that innervate the urinary bladder.	110
Figure 19	Bladder Health Questionnaire	113
Figure 20	Micturition Diary	116
Figure 21	Examination Table	120
Figure 22	Trolley-mounted control unit with integral printer and monitor, a mobile patient unit with built-in H ₂ O and CO ₂ pumps and a stand-mounted puller mechanism.	120
Figure 23	Uroflow Transducer	121
Figure 24	H ₂ O cystometry using single lumen catheter	122
Figure 25	Results of cystometry	124
Figure 26	Pie Medical – Scanner 250	126
Figure 27	The mean age in both groups	132
Figure 28	The mean BMI in both groups	133
Figure 29	The mean of the No. of incontinence episodes/week between baseline and week 12 in the tolterodine group	135
Figure 30	The mean of the No. of voluntary micturitions/24 hours between baseline and week 12 in the tolterodine group	135
Figure 31	The mean of the voided volume/micturition between baseline and week 12 in the tolterodine group	136
Figure 32	The mean of the No. of pads used/24 hours between baseline and week 12 in the tolterodine group	136
Figure 33	The mean of the V_{infus} at first sensation between baseline and week 12 in the tolterodine group	139
Figure 34	The mean of the V_{infus} at cystometric capacity between baseline and week 12 in the tolterodine group	139

Figure 35	The mean of the bladder compliance between baseline and week 12 in the tolterodine group	140
Figure 36	The mean of MDA between baseline and week 12 in the tolterodine group	140
Figure 37	The mean of the PVRV between baseline and week 12 in the tolterodine group	141
Figure 38	The mean of the No. of incontinence episodes/week between baseline and week 12 in the placebo group	143
Figure 39	The mean of the No. of voluntary micturitions/24 hours between baseline and week 12 in the placebo group	144
Figure 40	The mean of the voided volume/micturition between baseline and week 12 in the placebo group	144
Figure 41	The mean of the No. of pads used/24 hours between baseline and week 12 in the placebo group	145
Figure 42	The mean of the $V_{\rm infus}$ at first sensation between baseline and week 12 in the placebo group	147
Figure 43	The mean of the V_{infus} at cystometric capacity between baseline and week 12 in the placebo group	148
Figure 44	The mean of the bladder compliance between baseline and week 12 in the placebo group	148
Figure 45	The mean of MDA between baseline and week 12 in the placebo group	149
Figure 46	The mean of the PVRV between baseline and week 12 in the placebo group	149
Figure 47	Baseline & week 12 means of the No. of incontinence episodes/week between both groups	153
Figure 48	Baseline & week 12 means of the No. of voluntary micturitions/24 hours between both groups	153
Figure 49	Baseline & week 12 means of the voided volume/micturition between both groups	154
Figure 50	Baseline & week 12 means of the No. of pads used/24	154

	hours between both groups	
Figure 51	Baseline & week 12 means of the $V_{\mbox{\tiny infus}}$ at first sensation between both groups	158
Figure 52	Baseline & week 12 means of the V_{infus} at cystometric capacity between both groups	158
Figure 53	Baseline & week 12 means of the bladder compliance between both groups	159
Figure 54	Baseline & week 12 means of the MDA between both groups	159
Figure 55	Baseline & week 12 means of the PVRV between both groups	160
Figure 56	Effect of 12 weeks' treatment on subjective assessment of bladder symptoms in both groups	162
Figure 57	The incidence of dry mouth in both groups	163
Figure 58	The incidence of other adverse events in both groups	164

LIST OF ABBREVIATIONS

ATFP	Arcus Tendineus Fasciae Pelvis
ATLA	Arcus Tendineus Levator Ani
β-NGF	B-Nerve Growth Factor
bid	Two Times A Day
BMI	Body Mass Index
CMG	Cystometrogram
DDAVP	Desmopressin (1-Deamino-8-D-Arginine-Vasopressin)
DHIC	Detrusor Hyperactivity With Impaired Contractility
FDA	Food And Drug Administration
FLUTS	Bristol Female Lower Urinary Tract Symptoms Questionnaires
HSV	Human Simplex Virus
ICS	International Continence Society
IIQ	Incontinence Impact Questionnaire
IQOL	Incontinence QOL
IR	Immediate Release
KHQ	King's Health Questionnaire
KUB	Kidney, Ureter, Bladder
LA	Extended Release
M3	Muscarin-3
MDA	Maximum Detrusor Activity
MP	Maximum Pressure
NK	Neurokinin
NMP22	Nuclear Matrix Protein 22
OAB	Overactive Bladder
$\mathrm{P}_{\mathrm{det}}$	Detrusor Pressure
PVRV	Postvoid Residual Urine Volume
qd	Once A Day
qid	Four Times A Day
Q_{infus}	Infusion Flow Rate
QOL	Quality Of Life
tid	Three Times A Day
TTX	Tetrodotoxin
UDI	Urogenital Distress Inventory
UI	Urge Incontinence
UTI	Urinary Tract Infection
$ m V_{infus}$	Infused Volume
VR1	Vanilloid Receptor Subtype 1
VS	Versus

List of Abbreviations

XL	Extended Release
YIPS	York Incontinence Perception Scale

INTRODUCTION

Overactive bladder (OAB), which is characterized by symptoms of frequency, urgency and urge incontinence (UI) (either alone or in combination), is a common and distressing condition that has a profound effect on daily living of affected individuals (*Jackson, 1997; Johannesson et al., 1997; Kobelt et al., 1999*). In the USA, OAB affects at least 17 million individuals, while in Europe 17% of the population aged over 40 years experience this debilitating condition (*Wein and Rovner, 1999*).

According to the International Continence Society (ICS), OAB disorder is characterized by involuntary detrusor contractions that may occur spontaneously or may be provoked (by rapid filling, alterations of posture, coughing, walking and jumping (Hampel et al., 1997). An OAB of neurogenic origin usually has been referred to as a hyperflexic disorder, whereas one that is nonneurogenic is referred to as an unstable disorder (Hampel et al., 1997).

This disorder is treated predominantly with antimuscarinic drugs (Andersson, 1988; Andersson, 1997). Prior to the introduction of tolterodine, the most commonly used antimuscarinic agent was oxybutynin. This drug, while effective in many instances, has limited clinical utility due to tolerability problems, particularly bothersome dry mouth (Yarker et al., 1995; Drutz et al., 1999). Furthermore, unwanted cognitive effects are of concern. These tolerability concerns have negative implications for the treatment of OAB, especially since this condition normally requires prolonged therapy to maintain symptomatic relief (Katz, 1998).

Tolterodine is an antimuscarinic agent developed specifically for the treatment of the OAB. Unlike oxybutynin, tolterodine shows selectivity for the bladder over the salivary glands both *in vitro* and *in vivo*, a profile that seems to translate into a more pronounced and longer-lasting effect on the bladder than on salivation (Nilvebrant et al., 1997; Nilvebrant et al., 1997; Stahl et al., 1995). In clinical

studies, significantly fewer patients on tolterodine 2 mg twice daily experienced dry mouth at therapeutically equivalent dosages when compared with oxybutynin 5 mg three times daily (*Drutz et al., 1999; Appell, 1997; Abrams et al., 1998*). Tolterodine therefore overcomes many of the limitations of present pharmacological options for the treatment of OAB. Indeed, follow-up studies confirmed that the therapeutic effect of tolterodine is maintained during long-term treatment, with high rates of patient compliance (*Atan et al., 1999; Wein et al., 1999*).

OAB is manifested by a complex of interrelated symptoms, all of which significantly impact on patients' lives. Therefore, any therapy for this condition needs to address this complex of symptoms and not merely decrease one symptom with increases in other associated symptoms. Ultimately, however, the way in which patients perceive treatment is central to determining the impact of therapy (*Chancellor et al., 2000*).