

25-Hydroxy Vitamin D Arterial calcification and Cardiovascular risk marker in haemodialysis patients Thesis

Submitted for Partial Fulfillment of the MD in Internal Medicine Faculty of Medicine Cairo University

By

Sameh Mohamed Helmy Abouzeid

(M.B., B.Ch. Cairo University)

Supervisors

Prof. Dr. Dawlat Abd-El Hamid Belal,MD

Professor of internal medicine Cairo University

Prof. Azza Abdel Rahman al Shamaa, MD

Professor of Internal medicine Theodor Bilharz Research Institute

Dr. Mohamed Mustafa el Khatib, MD

Assistant Professor of Internal Medicine Cairo University

Dr. Amal Rashad al Shehaby, MD

Assistant Professor of Biochemistry Cairo University

> FACULTY OF MEDICINE CAIRO UNIVERSITY 2011

Abstract

(**Key Words**): 250H vitamin D3 – left ventricular mass index(LVMI)

- inti, al media thickness (IMT)

Vascular calcification is frequent in patients with chronic kidney disease (CKD). The presence and extent of vascular calcifications are predictors of cardiovascular and all-cause mortality in stable end-stage renal disease patients on hemodialysis. Accordingly, the present study was designed to examine the possible relation between vascular calcifications, 25-hydroxyvitamin D3 [25(OH)D3] serum level and the cardiovascular risk factors associated. In this study, the significant increase in LVMI in the Dialysis group is inversely correlated to the vitamin D level; pateints with low levels of vitamin D have a high Left ventricular mass index. A significant negative correlation was observed also between plasma levels of vitamin D and intimal media thickness.

First, thanks are all due to Allah for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

It was an honor to work under the supervision of eminent professors, who lent me their whole hearted support and immense facilities as is their usual with their juniors. To them, I owe more than I can record.

I would like to express my deepest gratitude and highest appreciation to **Professor Dr. Dawlat Abdel hamid Belal**, professor of internal medicine and nephrology, faculty of medicine, Cairo University, for his continuous encouragement, generous support and unlimited help, no word can express my gratitude.

I would like to express my sincere gratitude to **Professor Dr. Azz al Shamaa**, professor of Internal medicine, Theodor Bilahrz research insitute, who supervised this work with great interest and who gave me unlimited support throughout the work.

Many thanks to **Prof. Dr. Mohamed alkhatib**, Asst Professor of Internal

Medicine and nephrology, Cairo University, for his continuous help, valuable suggestions, guidance and encouragement during the progress of this work. I would like to thank him for the close and patient revision of the work.

I am greatly honored to express my deep gratitude and faithfulness to **Prof. Amal alshohaby**, Asst Professor of biochemistry, cairo university for her continuous help and kind sympathy.

Special thank and gratitude to my father **Prof. Dr. Mohamed Helmy abouzeid**, professor of internal Medicine and nephrology, Cairo University of for his great support and help for the completion of this work.

Finally, No words can express my deepest appreciation and gratitude to my family for their never ending support and care.

List of Abbreviations

List of Abbreviations

% Percentage

 Δ Delta

250H VIT D 25 hydroxy vitamin D3

4D Deutsche Diabetes Dialyse Studie

ABD Adynamic bone disease **AC** Arterial calcifications

ACE-I Angiotensin converting enzyme inhibitor

ADPN Adiponectin

ANP Atrial natriuretic peptide

APOL-1 Apolipoprotein-1

ARBS Angiotensin receptor blockers

ARIC Atherosclerosis risk in community study

AUC Area under curve **BMI** Body mass index

BMP-2 Bone morphogenetic protein 2

BNP Brain natriuretic peptide

BP Blood pressure

Ca Calcium

cGMP Cyclic guanosine monophosphate

CHD Coronary heart disease
CHF Congestive heart failure
CHS Cardiovascular health study
CKD Chronic kidney disease

CNH Cardiac natriuretic hormone

CRP C-reactive proteinCTNT Cardiac troponin TCVD Cardiovascular disease

DEXA Dual energy x-ray absorptiometry

EDD End diastolic diameter

EF Ejection fraction

eGFR Estimated glomerular filtration rate

List of Abbreviations

ERA- European renal association registry

EDTA

ESD End systolic diameter **ESRD** End stage renal disease

Fmol Femto mole

FGF-23 Fibroblast growth factorFS Fractional shorteningGFR Glomerular filtration rate

gm gram

Hb Hemoglobin**HD** Hemodialysis

HDL High density lipoprotein

HS Highly significant

HS-CRP High sensitivity C-reactive protein **HUNT** The Norg-Trondelag health study

IL-18 Interleuken-18

IGF-1 Insulin growth factor-1IMT Intimal media thinknessIVS Interventricular septum

KD Kilo DaltonKg KilogramLa Left atrium

LDL Low density lipoprotein

LVH Left ventricular Hypertrophy

LVM Left ventricular mass

LVMI Left ventricular mass index

MBD Mineral bone density

ml milliliter

mm-Hg Millimeter mercuryNF-Kβ Nuclear factor K β

NKF National kidney foundation NPR Natriuretic peptide receptor

NS Non Significant

NT- N terminal pro brain natriuretic peptide

List of Abbreviations

proBNP

O PG osteoprotegerin
P Phophorus
PTH Parathormone

PTHrP PTH-related peptide

pQCT peripheral quantitative computed tomography

PWT Posterior wall thickness

PWTS Posterior wall thickness during systole
PWTD Posterior wall thickness during diastole
RANKL Receptor activator of NF- _ B ligand

RRF Residual renal function

S Significant

SHPT Secondary hyperparathyroidism

STD Standard

TREAT Trial to reduce cardiovascular events with

Aranesp therapy

USRDS United States renal data system

VDR Vitamin D receptor

VSMCs Vascular smooth muscle cells

List of figures

Figure 1:	Pathophysiology of bone mineral disease		
Figure 2:	Mean age value among the studied groups	99	
Figure 3:	Comparison between heights of studied groups	103	
Figure 4:	Comparison between urea of studied groups	105	
Figure 5:	Comparison between creatinine of studied groups	106	
Figure 6:	Comparison between calcium of studied groups	108	
Figure 7:	Comparison between phosporus of studied groups	108	
Figure 8:	Comparison between SGpT of studied groups	109	
Figure 9:	Comparison between OH vit D3 of studied groups	110	
Figure 10:	Comparison between serum PTH of studied groups	111	
Figure 11:	Comparison between EF of studied groups	114	
Figure	Comparison between PWT of studied groups	116	

Comparison between IVS of studied groups	117
Comparison between LVMI of studied groups	118
Comparison between IMT of studied groups	119
Correlation between height and 25 HOVD of patients included in the study	119
Correlation between PTH and 25 OHVD of patients included in the study	121
Correlation between LVMI and 25 OHVD of patients included in the study	122
Correlation between EDD and 25 OHVD of patients included in the study	123
Correlation between EDD and 25 OHVD of patients included in the study	124
Correlation between IMT and 25 OHVD of patients included in the study	125
Comparison between SGpT of in relation to sex	128
Comparison between 25OH VIT D in relation to sex	129
Comparison between EF in relation to sex	130
Comparison between IVS in relation to sex	131
	Comparison between LVMI of studied groups Comparison between IMT of studied groups Correlation between height and 25 HOVD of patients included in the study Correlation between PTH and 25 OHVD of patients included in the study Correlation between LVMI and 25 OHVD of patients included in the study Correlation between EDD and 25 OHVD of patients included in the study Correlation between EDD and 25 OHVD of patients included in the study Correlation between EDD and 25 OHVD of patients included in the study Correlation between IMT and 25 OHVD of patients included in the study Comparison between SGpT of in relation to sex Comparison between 25OH VIT D in relation to sex

List of	figures
---------	---------

Figure 26:	Correlation between FS of patients in relation to 25 OH VIT D	132
Figure 27:	Correlation between weight of patients in relation to 25 OH VIT D	134

List of Tables

Table	Title	Page
1	Classification and definitions of cardiorenal syndromes	20
2	Procalcificant and anticalcificant factors of vascular calcification	69
3	Comparison between demographic and laboratory data of patients in relation to sex	98
4	Comparison between echocardiographic data of patients in relation to sex	99
5	Descriptive statistics of demographic and laboratory data of patients included in the study	100
6	Descriptive statistics of demographic and laboratory data of controls included in the study	101
7	Comparison between demographic and laboratory data of patients and controls included in the study	102
8	Descriptive statistics of echocardiographic data of patients included in the study	112
9	Descriptive statistics of echocardiographic data of controls included in the study	113
10	Comparison between echocardiographic data of patients and controls included in the study	113
11	Correlation between echocardiographic data of patients with calcium, phosphorus and PTH	131
12	Comparison between demographic and laboratory data of patients in relation to 25 OHVD	137
13	Correlation between demographic and laboratory data of patients with calcium, phosphorus and PTH	133
14	Comparison between echocardiographic data of patients in relation to 25 OHVD	135

Contents

Introduction	1
Aim of work	4
Review of literature	5
<u>Chapter I:</u> Chronic Kidney disease and end	
stage renal disease	5-16
Chapter II: Cardiovascular disease and the	
kidney	17-51
Chapter III: vitamin D	52-91
Patients and methods	92
Results	98
Discussion	132
Summary and Conclusion	141
Recommendations	145
References	146
Arabic summary	١

Introduction

Cardiovascular disease is the most common cause of death in dialysis patients. Increasing evidence shows that abnormalities in mineral metabolism may play an important role in cardiovascular disease in patients with chronic kidney disease (CKD), as hyperphosphatemia, hypercalcemia, high calcium-phosphorus product and secondary hyperparathyroidism have all been associated with increase mortality in dialysis patients. (*Kalantar-Zadeh K*, 2006 et al.)

Advanced CKD leads to divalent cation exchange and metabolic derangements as well as decreased production of 1, 25-dihydroxyvitamin D3 [1, 25 (OH)₂ D3] (Calcitriol) all of which can cause parathyroid gland hyperplasia and development of bone disease. One of the main functions of vitamin D is to maintain calcium and phosphate serum concentrations in the normal range and to allow for mineralization of newly synthesized bone. Its main sites of actions are the small intestine, bone and kidney. (*Hendy GN*, 2006 et al.)

Vitamin D has also been recognized to have numerous noncalcaemic function, probably associated with wide distribution of Vitamin D receptor (VDR), namely in the brain ,heart skeletal muscle, smooth muscle, pancreas, activated T and B lymphocytes and monocytes. CKD also interferes

With the interaction of the VDR with DNA, the nuclear uptake of the Calcitriol-receptor complex and the synthesis and expression of the receptor (*Andress DL*, 2006)

Vascular calcifications are highly prevalent in dialysis patients and have been associated with an increased risk of total mortality and cardiovascular mortality. Recent studies have demonstrated that vascular calcification is an active cellular process, similar to bone formation (*Moe SM*, 2002 et al.) Vascular smooth muscle cells (VSMCs) can differentiate into osteoblasts due to different stimuli, like hyperphosphatemia and hypercalcemia (*Giachelli CM*, 2004). Reduction of calcification inhibitors, such as fetuinA or matrix-Gla protein, may be another factor associated with the development of calcification. The presence of (Vitamin Dreceptor) VDR in VSMCs has been recently described and may explain a possible mechanism of the action of vitamin D in vascular calcifications. (*Andress DL*, 2006)

Patients with renal failure frequently have low serum 25-hydroxyvitamin D [25(OH) D3] (the substrate of [1, 25(OH) 2]. There are several reasons for this [25(OH) D3] deficiency or insufficiency in these patients; they are inactive and have decreased exposure to sunlight, have reduced ingestion of foods that are natural sources of vitamin D, the endogenous synthesis of vitamin D in the skin is also compromised in uremic patients. (*LaClair RE*, et al. 2005)

Some mechanisms linking vascular calcifications with cardiovascular risk, such as the association between vascular calcifications and arterial stiffness, have also been recognized. The loss of arterial distensibility is associated with increased pulse